精英家教网 > 初中数学 > 题目详情
如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则∠BAC′等于______.
∵△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,
∴∠CAC′=60°,
又∵等腰直角△ABC中,∠B=90°,
∴∠BAC=45°,
∴∠BAC′=∠BAC+∠CAC′=45°+60°=105°.
故答案为:105°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

Rt△ABC以点C为旋转中心,逆时针旋转90°得到△CDE的图形是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE'的长等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将直角△ABC绕点C顺时针旋转90°至△A′B′C的位置,已知AB=10,BC=6,M是A′B′的中点,则AM=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,点C是AB上一点,分别以AC,BC为边,在AB的同侧作等边三角形△ACD和△BCE.
(1)指出△ACE以点C为旋转中心,顺时针方向旋转60°后得到的三角形;
(2)若AE与BD交于点O,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).
(1)试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.
(2)若正方形的边长为2cm,重叠部分(四边形ABHG)的面积为
4
3
3
cm2,求旋转的角度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在如图所示的直角坐标系中,解答下列问题:
(1)分别写出A、B两点的坐标;
(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图1是边长分别为4
3
和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交AB于F(图2).
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论;
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3).
探究:设△PQR移动的时间为x秒,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用两个全等的等边△ABC和△ACD拼成如图的菱形ABCD.现把一个含60°角的三角板与这个菱形叠合,使三角板的60°角的顶点与点A重合,两边分别与AB、AC重合.将三角板绕点A逆时针方向旋转.
(1)当三角板的两边分别与菱形的两边BC、CD相交于点E、F时(图a),
①猜想BE与CF的数量关系是______;
②证明你猜想的结论.
(2)当三角板的两边分别与菱形的两边BC、CD的延长线相交于点E、F时(图b),连接EF,判断△AEF的形状,并证明你的结论.

查看答案和解析>>

同步练习册答案