精英家教网 > 初中数学 > 题目详情
如图,以矩形OABC的顶点O为原点,OC所在的直线为x轴,OA所在的直线为y轴,建立平面精英家教网直角坐标系.已知OA=6,OC=4,在OA上取一点D,将△BDA沿BD翻折,点A恰好落在BC边上的点E处.
(1)试判断四边形ABED的形状,并说明理由;
(2)若点F是AB的中点,设顶点为E的抛物线的右侧部分交x轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式.
分析:(1)∠BAE=90°,由折叠的性质可知∠ABD=∠EBD,得∠ABD=∠EBD=45°,可判断四边形ABED为正方形;
(2)连接EF,EO,通过计算可证△BEF≌△DEO,得出EF=EO,EF⊥EO,根据EF为腰和底两种情况,求抛物线解析式.
解答:解:(1)四边形ABED为正方形.
理由:由折叠的性质可知∠ABD=∠EBD,BA=BE,
又∵∠ABE=90°,
∴∠ABD=∠EBD=∠ADB=∠ABD=45°,
∴四边形ABED为正方形;

(2)连接EF,EO,依题意得顶点E(-4,2),
设抛物线解析式为y=a(x+4)2+2,
∵DO=AO-AD=OA-OC=2,BF=
1
2
AB=2,BE=DE,
∴△BEF≌△DEO,
∴EF=EO,EF⊥EO,精英家教网
当EF为腰时,点P与点O重合,将P(0,0)代入y=a(x+4)2+2中,得a=-
1
8

∴y=-
1
8
(x+4)2+2,
当EF为底时,点P在EF的中垂线上,
∵E(-4,2),
∴直线OE解析式为y=-
1
2
x,
又∵EF⊥EO,线段EF的中点坐标为(-3,4),
∴EF的中垂线解析式为y=-
1
2
x+
5
2
,EF的中垂线与x轴交点P(5,0)
将P(5,0)代入y=a(x+4)2+2中,得a=-
2
81

∴y=-
2
81
(x+4)2+2,
∴抛物线解析式为y=-
1
8
(x+4)2+2或y=-
2
81
(x+4)2+2.
点评:本题考查了二次函数的综合运用.关键是由折叠的性质判断正方形,确定相关点的坐标,根据EF为腰和底,分类求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向精英家教网A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B运动.
(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;
(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系、已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处,若在y轴上存在点P,且满足FE=FP,则P点坐标为
(0,4),(0,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标精英家教网系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(Ⅰ)直接写出点E、F的坐标;
(Ⅱ)若M为x轴上的动点,N为y轴上的动点,当四边形MNFE的周长最小时,求出点M、N的坐标,并求出周长的最小值.

查看答案和解析>>

同步练习册答案