精英家教网 > 初中数学 > 题目详情

【题目】一、阅读理解

在△ABC中,BC=a,CA=b,AB=c;

(1)若∠C为直角,则a2+b2=c2

(2)若∠C为锐角,则a2+b2c2的关系为:a2+b2>c2

(3)若∠C为钝角,试推导a2+b2c2的关系.

二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围

【答案】∠C为钝角时,; 当∠B为钝角时,

【解析】

试题(3)如图过AAD⊥BCD,则BD=BC+CD=a+CD

△ABD中:AD2=AB2BD2

△ACD中:AD2=AC2CD2

AB2BD2= AC2CD2

c2(+CD)2= b2CD2

>0CD>0

,所以:

△ABC中,BC=a=3CA=b=4AB=c;若△ABC是钝角三角形 , 当∠C为钝角时,c<a+b=7,所以

∠B为钝角时,,解得,又因为c>b-a=1,所以

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是(
A.70°
B.35°
C.40°
D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.

(1)求证:ABE≌△EGF;

(2)若AB=2,S△ABE=2S△ECF,求BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

(材料)如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于RtBAERtBFE的面积之和,根据图形我们就能证明勾股定理: .

(请回答)如图是任意符合条件的两个全等的RtBEARtACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BCAD= AE2;④SABC=4SADF . 其中正确的有(
A.1个
B.2 个
C.3 个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+m的图象与反比例函数y= 的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).
(1)求m及k的值;
(2)求点C的坐标,并结合图象写出不等式组0<x+m≤ 的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,∠ACB=90°,AC=BC,AE BC 边的中线,过点C CF⊥AE,垂足为点 F,过点 B BD⊥BC CF 的延长线于点 D.

(1)试证明:AE=CD;

(2)若 AC=12cm,求线段 BD 的长度.

查看答案和解析>>

同步练习册答案