精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

【答案】
(1)

解:依题意得:

解之得:

∴抛物线解析式为y=﹣x2﹣2x+3

∵对称轴为x=﹣1,且抛物线经过A(1,0),

∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,

解之得:

∴直线y=mx+n的解析式为y=x+3


(2)

解:设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.

把x=﹣1代入直线y=x+3得,y=2,

∴M(﹣1,2),

即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2)


(3)

解:设P(﹣1,t),

又∵B(﹣3,0),C(0,3),

∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,

①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;

②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,

③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1= ,t2=

综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1, ) 或(﹣1, ).


【解析】(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2 , PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:点A在射线CE上,∠C=∠D

1)如图1,若AC∥BD,求证:AD∥BC

2)如图2,若∠BAC=∠BADBD⊥BC,请探究∠DAE∠C的数量关系,写出你的探究结论,并加以证明;

3)如图3,在(2)的条件下,过点DDF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+EOF=156°,则∠EOF的度数是(  )

A. 88° B. 30° C. 32° D. 48°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),ABCD,试求∠BPD与∠B、D的数量关系,说明理由.

(1)填空:

解:过点PEFAB,

∴∠B+BPE=180°

ABCD,EFAB

   (如果两条直线都和第三条直线平行,那么这两条直线也互相平行)

EPD+   =180°

∴∠B+BPE+EPD+D=360°

∴∠B+BPD+D=360°

(2)依照上面的解题方法,观察图(2),已知ABCD,猜想图中的∠BPD与∠B、D的数量关系,并说明理由.

(3)观察图(3)和(4),已知ABCD,直接写出图中的∠BPD与∠B、D的数量关系,不用说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道L上确定点D,使CD与L垂直,测得CD的长等于24米,在L上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(结果保留根号);
(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据: ≈1.73, ≈1.41)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)2﹣13+8;

(2)2+(﹣6)÷2×

(3)5×22﹣3÷(﹣);

(4)﹣42+(﹣9)×[(﹣2)3+]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.

(1)请补全下表:

30°

45°

60°

90°

120°

135°

150°

S

1

(2)填空:

由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到( ______°);( ______°),…,由此可以归纳出

(3) 两块相同的等腰直角三角板按如图的方式放置,AD=AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:

次数

1

2

3

4

5

6

7

8

9

10

黑棋数

2

5

1

5

4

7

4

3

3

6

根据以上数据,解答下列问题:

(I)直接填空:第10次摸棋子摸到黑棋子的频率为   

(Ⅱ)试估算袋中的白棋子数量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF,CF.

(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF,CF的数量关系和位置关系(不用证明);

(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;

(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC= ,求此时线段CF的长(直接写出结果).

查看答案和解析>>

同步练习册答案