精英家教网 > 初中数学 > 题目详情
一列客车始终作匀速运动,它通过长为450米的桥时,从车头上桥到车尾下桥共用33秒:它穿过长为760米的隧道时,整个车身都在隧道里的时间为22秒,从客车的对面开来一列长度为a米,速度为每秒v米的货车,两车交错,从车头相遇到车尾相离共用t秒.
(1)写了用a、v表示的函数解析式;
(2)若货车的速度不低于每秒12米,且不到每秒15米,其长度为324米,求两车交错所用时间的取值范围.
分析:(1)设客车的长度为a1米,客车的速度为v1,则可列方程组
33v1=450+a1
22v1=760-a1
v1=22
a1=276
,知道客车的长度为276米速度为22,可根据条件求出v和a的函数关系.
(2)12≤v<15,货车的数据为324米,代入数据可得取值范围.
解答:解:(1)设客车的长度为a1米,客车的速度为v1,则可列出方程组
33v1=450+a1
22v1=760-a1

解得
v1=22
a1=276

22t+vt=276+a,
t=
276+a
22+v


(2)从这个关系式可以看出速度越大时间越短,
当代入v=12,a=324时取得最大值
300
17

当v=15,a=324时取得最小值
600
37

600
37
<t≤
300
17
点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数t随v的变化,结合自变量的取值范围确定最值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读理解:
我们知道:一条线段有两个端点,线段AB和线段BA表示同一条线段.
若在直线l上取了三个不同的点,则以它们为端点的线段共有
3
3
条,若取了四个不同的点,则共有线段
6
6
条,…,依此类推,取了n个不同的点,共有线段
n(n-1)
2
n(n-1)
2
条(用含n的代数式表示)
类比探究:
以一个锐角的顶点为端点向这个角的内部引射线.
(1)若引出两条射线,则所得图形中共有
6
6
个锐角;
(2)若引出n条射线,则所得图形中共有
(n+1)(n+2)
2
(n+1)(n+2)
2
个锐角(用含n的代数式表示)
拓展应用:
一条铁路上共有8个火车站,若一列客车往返过程中必须停靠每个车站,则铁路局需为这条线路准备多少种车票?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

一列客车始终作匀速运动,它通过长为450米的桥时,从车头上桥到车尾下桥共用33秒:它穿过长为760米的隧道时,整个车身都在隧道里的时间为22秒,从客车的对面开来一列长度为a米,速度为每秒v米的货车,两车交错,从车头相遇到车尾相离共用t秒.
(1)写了用a、v表示的函数解析式;
(2)若货车的速度不低于每秒12米,且不到每秒15米,其长度为324米,求两车交错所用时间的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一列客车始终作匀速运动,它通过长为450米的桥时,从车头上桥到车尾下桥共用33秒:它穿过长为760米的隧道时,整个车身都在隧道里的时间为22秒,从客车的对面开来一列长度为a米,速度为每秒v米的货车,两车交错,从车头相遇到车尾相离共用t秒.
(1)写了用a、v表示的函数解析式;
(2)若货车的速度不低于每秒12米,且不到每秒15米,其长度为324米,求两车交错所用时间的取值范围.

查看答案和解析>>

科目:初中数学 来源:1994年全国初中数学竞赛试卷(解析版) 题型:解答题

一列客车始终作匀速运动,它通过长为450米的桥时,从车头上桥到车尾下桥共用33秒:它穿过长为760米的隧道时,整个车身都在隧道里的时间为22秒,从客车的对面开来一列长度为a米,速度为每秒v米的货车,两车交错,从车头相遇到车尾相离共用t秒.
(1)写了用a、v表示的函数解析式;
(2)若货车的速度不低于每秒12米,且不到每秒15米,其长度为324米,求两车交错所用时间的取值范围.

查看答案和解析>>

同步练习册答案