分析 先将a=20152015×999变形为2015×999×10001,进一步得到(2014+1)(1000-1)×10001,再展开得到2014×1000×10001-2014×10001+1000×10001-10001,将b=20142014×1000变形为2014×1000×10001,通过计算-2014×10001+1000×10001-10001的正负即可求解.
解答 解:a=20152015×999
=2015×999×10001
=(2014+1)(1000-1)×10001
=2014×1000×10001-2014×10001+1000×10001-10001,
b=20142014×1000=2014×1000×10001,
∵-2014×10001+1000×10001-10001=(-2014+1000-1)×10001<0,
∴a<b.
故答案为:<.
点评 此题考查了因式分解的应用,有理数大小比较,注意整体思想的应用,计算量较大,有一定的难度.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com