精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=数学公式
(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

解:(1)解方程x2-4x-12=0得x1=6,x2=-2.
∴A(-2,0),B(6,0).过D作DE⊥x轴于E,
∵D是顶点,
∴点E是AB的中点,
∴E(2,0).
在Rt△DAE中,
∵cos∠DAB=
∴∠DAE=45°,
∴AE=DE=4,
∴D(2,4)(由A、B、D三点坐标解出二次函数解析式,不论用顶点式、两根式还是一般式均可),
∴抛物线的解析式为(或写成);

(2)∵AC⊥AD,由(1)∠DAE=45°得:
∠BAC=45°,作CG⊥x轴于G,△ACG是等腰直角三角形.
∴设C(a,b)(显然a>0,b<0),
则b=-a-2,即C(a,-a-2),
∵点C在抛物线上,
∴-a-2=-(a-2)2+4,
a2-8a-20=0,
解之得:a1=10,a2=-2(舍去),
∴C(10,-12)设直线AC的方程为y=mx+n,代入A、C的坐标,得
解之得:
∴直线AC的解析式为y=-x-2;

(3)存在点P(4,3),使S△APC最大=54.
理由如下:
作CG⊥x轴于G,PF∥y轴交x轴于Q,交AC于F.设点P的横坐标是h,
则G(10,0),P(h,),F(h,-h-2),
∴PF=
△PCF的高等于QG.
S△APC=S△APF+S△PCF
=PF•AQ+PF•QG,
=PF(AQ+QG)=PF•AG,
=
=(-2<x<6),
∴当h=4时,S△APC最大=54.
点P的坐标为(4,3).
分析:(1)解出方程x2-4x-12=0的两根即可求出A、B两点的坐标,再利用cos∠DAB=求出D点坐标,进而利用顶点式、两根式或一般式求出二次函数的解析式.
(2)由(1)推得△ACG是等腰直角三角形,据此设出C点坐标C(a,-a-2),将其代入抛物线即可求出a的值,进而求出A、C的坐标,从而求出直线解析式.
(3)将S△APC分解为S△APF与S△PCF的和,求出PF的函数表达式,利用三角形的面积公式得出S△APC的表达式,转化为二次函数的最值问题解答.
点评:本题是二次函数的综合题型,其中涉及到的知识点有求抛物线的解析式、直线的解析式、和三角形的面积求法.关于点的存在性问题时要注意分析题意,先假设存在,再进行计算,若能求出该点坐标,则该点存在;若不能求出该点坐标,则该点不存在.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案