ÒÑÖª£ºÈçͼ£¬Õý±ÈÀýº¯Êýy£½axµÄͼÏóÓë·´±ÈÀýº¯Êýy£½µÄͼÏó½»ÓÚµãA(3£¬2)£®

(1)È·¶¨ÉÏÊöÕý±ÈÀýº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ±í´ïʽ

(2)¸ù¾ÝͼÏó»Ø´ð£¬ÔÚµÚÒ»ÏóÏÞÄÚ£¬µ±xÈ¡ºÎֵʱ£¬·´±ÈÀýº¯ÊýµÄÖµ´óÓÚÕý±ÈÀýº¯ÊýµÄÖµ£¿

(3)M(m£¬n)ÊÇ·´±ÈÀýº¯ÊýͼÏóÉϵÄÒ»¸ö¶¯µã£¬ÆäÖÐ0£¼m£¼3£¬¹ýµãM×÷Ö±ÏßMB¡ÎxÖᣬ½»yÖáÓÚµãB£»¹ýµãA×÷Ö±ÏßAC¡ÎyÖá½»xÖáÓÚµãC£¬½»Ö±ÏßMBÓÚµãD£®µ±ËıßÐÎOADMµÄÃæ»ýΪ6ʱ£¬ÇëÅжÏÏ߶ÎBMÓëDMµÄ´óС¹Øϵ£¬²¢ËµÃ÷ÀíÓÉ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÕý±ÈÀýº¯Êýy=xÓë·´±ÈÀýº¯Êýy=
1x
µÄͼÏó½»ÓÚA¡¢BÁ½µã£®
£¨1£©Çó³öA¡¢BÁ½µãµÄ×ø±ê£»
£¨2£©¸ù¾ÝͼÏóÇóʹÕý±ÈÀýº¯ÊýÖµ´óÓÚ·´±ÈÀýº¯ÊýÖµµÄxµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕý±ÈÀýº¯Êýy1=x£¬·´±ÈÀýº¯Êýy2=
1
x
£¬ÓÉy1£¬y2¹¹ÔìÒ»¸öк¯Êýy=x+
1
x
ÆäͼÏóÈçͼËùʾ£®£¨ÒòÆäͼ¾«Ó¢¼Ò½ÌÍøÏóËÆË«¹³£¬ÎÒÃdzÆ֮Ϊ¡°Ë«¹³º¯Êý¡±£©£®¸ø³öÏÂÁм¸¸öÃüÌ⣺
¢Ù¸Ãº¯ÊýµÄͼÏóÊÇÖÐÐĶԳÆͼÐΣ»
¢Úµ±x£¼0ʱ£¬¸Ãº¯ÊýÔÚx=-1ʱȡµÃ×î´óÖµ-2£»
¢ÛyµÄÖµ²»¿ÉÄÜΪ1£»
¢ÜÔÚÿ¸öÏóÏÞÄÚ£¬º¯ÊýÖµyËæ×Ô±äÁ¿xµÄÔö´ó¶øÔö´ó£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ
 
£®£¨Çëд³öËùÓÐÕýÈ·µÄÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÕý±ÈÀýº¯Êýy=ax£¨a¡Ù0£©µÄͼÏóÓë·´±ÈÀýº¯ÖÂy=
kx
£¨k¡Ù0£©µÄͼÏóµÄÒ»¸ö½»µãΪA£¨-1£¬2-k2£©£¬ÁíÒ»¸ö½»µãΪB£¬ÇÒA¡¢B¹ØÓÚÔ­µãO¶Ô³Æ£¬DΪOBµÄÖе㣬¹ýµãDµÄÏ߶ÎOBµÄ´¹Ö±Æ½·ÖÏßÓëxÖá¡¢yÖá·Ö±ð½»ÓÚC¡¢E£®
£¨1£©Ð´³ö·´±ÈÀýº¯ÊýºÍÕý±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÊÔ¼ÆËã¡÷COEµÄÃæ»ýÊÇ¡÷ODEÃæ»ýµÄ¶àÉÙ±¶£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕý±ÈÀýº¯Êýy1=x£¬·´±ÈÀýº¯Êýy2=
1
x
£¬ÓÉy1£¬y2¹¹ÔìÒ»¸öк¯Êýy=x+
1
x
£¬ÆäͼÏóÈçͼËùʾ£®£¨ÒòÆäͼÏóËÆË«¹³£¬ÎÒÃdzÆ֮Ϊ¡°Ë«¹³º¯Êý¡±£©£®¸ø³öÏÂÁм¸¸öÃüÌ⣺
¢Ù¸Ãº¯ÊýµÄͼÏóÊÇÖÐÐĶԳÆͼÐΣ»
¢Úµ±x£¼0ʱ£¬¸Ãº¯ÊýÔÚx=-1ʱȡµÃ×î´óÖµ-2£»
¢ÛyµÄÖµ²»¿ÉÄÜΪ1£»
¢ÜÔÚÿ¸öÏóÏÞÄÚ£¬º¯ÊýÖµyËæ×Ô±äÁ¿xµÄÔö´ó¶øÔö´ó£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏó¾­¹ýÈýµãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬3£©£¬ËüµÄ¶¥µãΪM£¬ÓÖÕý±ÈÀýº¯Êýy=kxµÄͼÏóÓë¶þ´Îº¯ÊýÏཻÓÚÁ½µãD¡¢E£¬ÇÒPÊÇÏ߶ÎDEµÄÖе㣮
£¨1£©Çó¸Ã¶þ´Îº¯ÊýµÄ½âÎöʽ£¬²¢Çóº¯Êý¶¥µãMµÄ×ø±ê£»
£¨2£©ÒÑÖªµãE£¨2£¬3£©£¬ÇÒ¶þ´Îº¯ÊýµÄº¯ÊýÖµ´óÓÚÕý±ÈÀýº¯Êýֵʱ£¬ÊÔ¸ù¾Ýº¯ÊýͼÏóÇó³ö·ûºÏÌõ¼þµÄ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
£¨3£©µ±kΪºÎֵʱÇÒ0£¼k£¼2£¬ÇóËıßÐÎPCMBµÄÃæ»ýΪ
93
16
£®
£¨²Î¿¼¹«Ê½£ºÒÑÖªÁ½µãD£¨x1£¬y1£©£¬E£¨x2£¬y2£©£¬ÔòÏ߶ÎDEµÄÖеã×ø±êΪ(
x1+x2
2
£¬
y1+y2
2
)
£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸