【题目】已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为90.
(1)请写出与A,B两点距离相等的M点对应的数;
(2)现在有一只电子蚂蚁P从B点出发时,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数是多少.
(3)若当电子蚂蚁P从B点出发时,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2个单位/秒的速度向右运动,求经过多长的时间两只电子蚂蚁在数轴上相距35个单位长度.
【答案】(1)40;(2)30;(3)经过13秒或27秒
【解析】
(1)先求出A、B两点之间的距离:90-(-10)=100,再求出M点到A、B两点的距离:100÷2=50,然后借助数轴即可求出M点.(2)根据A、B两点的距离和两只蚂蚁的运动速度可求出相遇的时间,即可求出每个蚂蚁运动的距离,即可求出C对应的数.(3)此问分为2只电子蚂蚁相遇前相距35个单位长度和相遇后相距35个单位长度,分别计算即可.
(1)90-(-10)=100,
100÷2=50,
90-50=40.
答:M点对应的数是40.
(2)100(2+3)=20,
203=60,
90-60=30.
答:C点对应的数是30
(3)(100-35)÷(2+3)=13秒,
(100+35)÷(2+3)=27.
答:经过13秒或27秒两只电子蚂蚁在数轴上相距35个单位长度.
科目:初中数学 来源: 题型:
【题目】有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0.现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有数字为y,确定点M坐标为(x,y).
(1)用树状图或列表法列举点M所有可能的坐标.
(2)求点M(x,y)在函数y=﹣x2﹣1的图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(m,m)在第一象限,且实数m满足条件:,ABy轴于B,ACx轴于C
(1)求m的值;
(2)如图1,BE=1,过A作AF⊥AE交x轴于F,连EF,D在AO上,且AD=AE,连接ED并延长交x轴于点P,求点P的坐标;
(3)如图2,G为线段OC延长线上一点,AC=CG,E为线段OB上一动点(不与O、B重合),F为线段CE的中点,若BF⊥FK交AG于K,延长BF、AC交于M,连接KM.请问∠FBK的大小是否变化?若不变,请求其值;若改变,求出变化的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某活动中心准备带会员去龙潭大峡谷一日游,1张儿童票和2张成人票共需190元,2张儿童票和3张成人票共需300元.解答下列问题:
(1)求每张儿童票和每张成人票各多少元?
(2)这个活动中心想带50人去游玩,费用不超过3000元,并且出于安全考虑,儿童人数不能超过22人,请你帮助活动中心确立出游方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,矩形纸片ABCD的边长分别为a、b(a<b),点M、N分别为边AD、BC上两点(点A、C除外),连接MN.
(1)如图②,分别沿ME、NF 将MN两侧纸片折叠,使点A、C分别落在MN上的A′、C′处,直接写出ME与FN的位置关系;
(2)如图③,当MN⊥BC 时,仍按(1)中的方式折叠,请求出四边形A′EBN与四边形C′FDM 的周长(用含a的代数式表示),并判断四边形A′EBN与四边形C′FDM周长之间的数量关系;
(3)如图④,若对角线BD与MN交于点O,分别沿BM、DN将MN两侧纸片折叠,折叠后,点A、C恰好都落在点O处,并且得到的四边形BNDM是菱形,请你探索a、b之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值:
(1)(x+2)(x﹣3)﹣x(x﹣4),其中x=﹣
(2)(a+b)(a﹣b)+(a+b)2﹣2a2 , 其中a=3,b=﹣ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学小组的10位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数的2倍加1,第1位同学报( +1),第2位同学报( +1),第3位同学报( +1)…这样得到的n个数的积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由于换季,一家服装店的老板想将某服装打折销售,于是她和正在上七年级的儿子商量打折方案,下面是她和儿子商量时的对话情景:
妈妈:“儿子,每件衣服按标价的5折出售,可以吗?”
儿子:“若每件衣服按标价的5折出售会亏本30元.”
妈妈:“那每件衣服按标价的8折出售呢?”
儿子:“若每件衣服按标价的8折出售将会赚60元.”
……
请根据上面的信息,解决问题:
(1)求这种服装的标价.
(2)若要不亏本,至少打几折?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形的直角顶点在第一象限,顶点、分别在函数图像的两个分支上,且经过原点,与轴相交于点,连接,已知平分四边形的面积.
(1)证明::
(2)求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com