精英家教网 > 初中数学 > 题目详情
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润 B型利润
甲店 200 170
乙店 160 150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
分析:(1)首先设甲店B型产品有(70-x),乙店A型有(40-x)件,B型有(x-10)件,列出不等式方程组求解即可;
(2)由(1)可得几种不同的分配方案;
(3)依题意得出W与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案.
解答:解:依题意,分配给甲店A型产品x件,则甲店B型产品有(70-x)件,乙店A型有(40-x)件,B型有{30-(40-x)}件,则
(1)W=200x+170(70-x)+160(40-x)+150(x-10)=20x+16800.
x≥0
70-x≥0
40-x≥0
x-10≥0
,解得10≤x≤40.

(2)由W=20x+16800≥17560,
∴x≥38.
∴38≤x≤40,x=38,39,40.
∴有三种不同的分配方案.
方案一:x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件;
方案二:x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件;
方案三:x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件.

(3)依题意:200-a>170,即a<30,
W=(200-a)x+170(70-x)+160(40-x)+150(x-10)=(20-a)x+16800,(10≤x≤40).
①当0<a<20时,20-a>0,W随x增大而增大,
∴x=40,W有最大值,
即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大;
②当a=20时,10≤x≤40,W=16800,符合题意的各种方案,使总利润都一样;
③当20<a<30时,20-a<0,W随x增大而减小,
∴x=10,W有最大值,
即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.
点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,
(1)根据A型、B型产品都能卖完,列出不等式关系式即可求解;
(2)由(2)关系式,结合总利润不低于17560元,列不等式解答;
(3)根据a的不同取值范围,代入利润关系式解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润 B型利润
甲店 200 170
乙店 160 150
(1)设分配给甲店A型产品W=200x+170(70-x)+160(40-x)+150(x-10)件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,有多少种不同分配方案,哪种方案总利润最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司有A型产品40件,B型产品60件,分配给下属甲,乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完,两商店销售这两种产品每件的利润(元)如下表:
A型利润 B型利润
甲店 200 170
乙店 160 150
(1)设分配给甲店A型产品x件;
①甲店B型产品有
(70-x)
(70-x)
件;
乙店A型产品有
(40-x)
(40-x)
件,B型产品有
(x-10)
(x-10)
件.
②这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的是取值范围.
(2)公司决定对甲店A型产品降价销售,每件利润减少a元,但降价后A型产品的每件利润仍高于甲店B型产品的每件利润,甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润 B型利润
甲店 200 170
乙店 160 150
设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元)
(1)求W关于x的函数关系式,并求出x的取值范围
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案?
(3)实际销售过程中,公司发现这批产品尤其是A型产品很畅销,便决定对甲店的最后21件A型产品每件提价a元销售(a为正整数).两店全部销售完毕后结果的总利润为18000元,求a的值.并写出公司这100件产品对甲乙两店是如何分配的?

查看答案和解析>>

科目:初中数学 来源:2011年中考数学总复习专题:应用题(解析版) 题型:解答题

(2008•黄石)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润B型利润
甲店200170
乙店160150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?

查看答案和解析>>

同步练习册答案