【题目】在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°
(1)当CE⊥AB时,点D与点A重合,求证:DE2=AD2+BE2
(2)当AB=4时,求点E到线段AC的最短距离
(3)当点D不与点A重合时,探究:DE2=AD2+BE2是否成立?若成立,请证明;若不成立,请说明理由
【答案】(1)证明见详解;(2);(3)成立,证明见详解.
【解析】
(1)由等腰直角三角形的性质直接得出结果;
(2)当CE⊥AB时,点D与点A重合时,点E到AC的距离最短;过点E作EG⊥AC于点G,由等腰直角三角形的性质,得到AG=GE,然后利用勾股定理即可得到GE的长度;
(3)作AF⊥AB,使AF=BE,连接DF,根据SAS证得△CAF≌△CBE和△CDF≌△CDE,再由勾股定理和等量代换即可解答;
(1)解:如图:当CE⊥AB时,点D与点A重合,
∵CE⊥AB,
∴AE=BE,
∵点D与点A重合,
∴DE=BE,
∴DE2=AD2+BE2;
(2)根据题意,当CE⊥AB时,点D与点A重合时,点E到AC的距离最短;
过点E作EG⊥AC于点G,如图:
在等腰直角三角形ABC中,
∠A=45°,AE=BE=,
∴△AGE是等腰直角三角形,即AG=GE,
由勾股定理,得:,
∴,
∴;
∴点E到线段AC的最短距离为:;
(3)成立;
证明:过点A作AF⊥AB,使AF=BE,连接DF,CF,
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠CAB=∠B=45°,
∴∠FAC=45°,
∴△CAF≌△CBE(SAS),
∴CF=CE,∠ACF=∠BCE,
∵∠ACB=90°,∠DCE=45°,
∴∠ACD+∠BCE=∠ACB-∠DCE=90°-45°=45°,
∵∠ACF=∠BCE,
∴∠ACD+∠ACF=45°,
即∠DCF=45°,
∴∠DCF=∠DCE,
又∵CD=CD,
∴△CDF≌△CDE(SAS),
∴DF=DE,
∵,
∴;
科目:初中数学 来源: 题型:
【题目】一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:
(1)甲乙两地相距 千米,慢车速度为 千米/小时.
(2)求快车速度是多少?
(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式.
(4)直接写出两车相距300千米时的x值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC是等腰三角形,AB=AC,点D,E,F分别在AB,BC,AC边上,且BD=CE,BE=CF.
(1)求证:△DEF是等腰三角形;
(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E, AE=3cm,△ADC的周长为9cm,则△ABC的周长是( )cm.
A.9B.12C.15D.18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:
(1)本次调查的学生人数是 人;
(2)图2中α是 度,并将图1条形统计图补充完整;
(3)请估算该校九年级学生自主学习时间不少于1.5小时有 人;
(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y═﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B的坐标为(3,0),点C的坐标为(0,5).有一宽度为1,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.
(1)求抛物线的解析式及点A的坐标;
(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;
(3)在矩形的平移过程中,是否存在以点P,Q,M,N为顶点的四边形是平行四边形,若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com