精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠BAC=90°,AB=AC,P为BC所在直线上一点,D为AB所在直线上一点,操作:当PA=PD时,过点D作BC所在直线的垂线,垂足为E.
精英家教网
(1)猜测线段PE与线段BC的数量关系;
(2)请你利用图②,图③,选择不同位置的点P、D按上述方法操作;
(3)经历(2)之后,如果认为你猜测的结论是正确的,请加以证明;如果认为你猜测的结论是错误的,请说明理由.
分析:(1)过点A作AM⊥BC,垂足为M,可证明△PDE≌△APM,则PM=DE,根据题意得△BDE是等腰直角三角形,从而得出PE的长即为BM的长,再由等腰三角形的性质得出PE是BC的一半;
(2)再把点P分别放在点P在CB的延长线上和BC的延长线上;
(3)当点P分别放在点P在CB的延长线上(1)中的结论仍成立,当点P分别放在点P在BC的延长线上时不成立,按上述操作,证明当点P分别放在点P在CB的延长线上△PDE≌△APM,PE是BC的一半.
解答:精英家教网解:(1)如图,过点A作AM⊥BC,垂足为M,
∵∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,
∵PA=PD,∴∠BAP=∠PDB,
∵DE⊥BC,∴∠BDE=∠EBD=45°,
∴∠APM=∠PDE,
∴△PDE≌△APM,∴PM=DE,
∵ED=BE,∴PM=BE,
∴PE=BM=
1
2
BC;

(2)如图,点P在CB的延长线上,
精英家教网当点P分别放在点P在BC的延长线上时不成立;

(3)当点P分别放在点P在CB的延长线上,
如(2)中图,如图,过点A作AM⊥BC,垂足为M,
∵∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,
∵PA=PD,∴∠BAP=∠PDB,
∵DE⊥BC,∴∠BDE=∠EBD=45°,
∴∠APM=∠PDE,
∴△PDE≌△APM,∴PM=DE,
∵ED=BE,∴PM=BE,
∴PE=BM=
1
2
BC;
此时成立,
当点P分别放在点P在BC的延长线上时,
∵PA=PD,∴∠BAP=∠PDB,
∵∠BAP=∠PDB>90°,
∴由三角形的内角和定理得,
当点P分别放在点P在BC的延长线上时不成立.
点评:本题考查了全等三角形的判定和性质、等腰直角三角形的性质,是一道综合题难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案