精英家教网 > 初中数学 > 题目详情
(2003•天津)如图,O为平行四边形ABCD对角线AC与BD的交点,FE经过O点,且与边AD,BC分别交于点E,F,若BF=DE,则图中全等的三角形最多有( )

A.2对
B.3对
C.5对
D.6对
【答案】分析:本题是开放题,应先根据平行四边形的性质及已知条件得到图中全等的三角形:△ADC≌△CBA,△ABD≌△CDB,△OAD≌△OCB,△OEA≌△OFC,△OED≌△OFB,△OAB≌△OCD共6对.再分别进行证明.
解答:解:①△ADC≌△CBA
∵ABCD为平行四边形
∴AB=CD,∠ABC=∠ADC,AD=BC
∴△ADC≌△CBA;
②△ABD≌△CDB
∵ABCD为平行四边形
∴AB=CD,∠BAD=∠BCD,AD=BC
∴△ABD≌△CDB;
③△OAD≌△OCB
∵对角线AC与BD的交于O
∴OA=OC,OD=OB,∠AOD=∠BOC
∴△OAD≌△OCB;
④△OEA≌△OFC
∵对角线AC与BD的交于O
∴OA=OC,∠AOE=∠COF,∠AOE=∠COF
∴△OEA≌△OFC;
⑤△OED≌△OFB
∵对角线AC与BD的交于O
∴OD=OB,∠EOD=∠FOB,OE=OF
∴△OED≌△OFB;
⑥△OAB≌△OCD
∵对角线AC与BD的交于O
∴OA=OC,∠AOB=∠DOC,OB=OD
∴△OAB≌△OCD.
故选D.
点评:本题考查平行四边形的性质及全等三角形的判定条件.判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《四边形》(01)(解析版) 题型:选择题

(2003•天津)如图,O为平行四边形ABCD对角线AC与BD的交点,FE经过O点,且与边AD,BC分别交于点E,F,若BF=DE,则图中全等的三角形最多有( )

A.2对
B.3对
C.5对
D.6对

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《三角形》(09)(解析版) 题型:解答题

(2003•天津)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心、CA为半径的圆与AB、BC分别交于点D、E.求AB、AD的长.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《三角形》(01)(解析版) 题型:选择题

(2003•天津)如图,O为平行四边形ABCD对角线AC与BD的交点,FE经过O点,且与边AD,BC分别交于点E,F,若BF=DE,则图中全等的三角形最多有( )

A.2对
B.3对
C.5对
D.6对

查看答案和解析>>

科目:初中数学 来源:2003年天津市中考数学试卷(解析版) 题型:解答题

(2003•天津)如图,湖泊的中央有一个建筑物AB,某人在地面C处测得其顶部A的仰角为60°,然后,自C处沿BC方向行100m到D点,又测得其顶部A的仰角为30°,求建筑物AB的高(精确到0.01m,≈1.732).

查看答案和解析>>

同步练习册答案