精英家教网 > 初中数学 > 题目详情
阅读下面材料:
如图(1),把△ABC沿直线BC平行移动线段BC的长度,可以变到△DEC的位置;
如图(2),以BC为轴,把△ABC翻折180°,可以变到△DBC的位置;
如图(3),以点A为中心,把△ABC旋转180°,可以变到△AED的位置.
像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.
回答下列问题:
①在图(4)中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF的位置;
②指图中线段BE与DF之间的关系,为什么?

【答案】分析:①AB和AD是对应线段,那么应绕点A逆时针旋转90°得到;
②关系应包括位置关系和数量关系.旋转前后的三角形是全等的,∴BE=DF,延长BE交DF于点G,利用对应角相等,可得到垂直.
解答:解:①在图4中可以通过旋转90°使△ABE变到△ADF的位置.(3分)

②由全等变换的定义可知,通过旋转90°,△ABE变到△ADF的位置,只改变位置,不改变形状大小,
∴△ABE≌△ADF.
∴BE=DF,∠ABE=∠ADF.
∵∠ADF+∠F=90°,
∴∠ABE+∠F=90°,
∴BE⊥DF.(9分)
点评:旋转前后的三角形全等;所求关系应包括位置关系和数量关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

21、阅读下面材料:
如图(1),把△ABC沿直线BC平行移动线段BC的长度,可以变到△DEC的位置;
如图(2),以BC为轴,把△ABC翻折180°,可以变到△DBC的位置;
如图(3),以点A为中心,把△ABC旋转180°,可以变到△AED的位置.
像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.
回答下列问题:
①在图(4)中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF的位置;
②指图中线段BE与DF之间的关系,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•房山区一模)阅读下面材料:
如图1,已知线段AB、CD相交于点O,且AB=CD,请你利用所学知识把线段AB、CD转移到同一三角形中.
小强同学利用平移知识解决了此问题,具体做法:
如图2,延长OD至点E,使DE=CO,延长OA至点F,使AF=OB,连接EF,则△OEF为所求的三角形.
请你仔细体会小强的做法,探究并解答下列问题:
如图3,长为2的三条线段AA′,BB′,CC′交于一点O,并且∠B′OA=∠C′OB=∠A′OC=60°;
(1)请你把三条线段AA′,BB′,CC′转移到同一三角形中.(简要叙述画法)
(2)连接AB′、BC′、CA′,如图4,设△AB′O、△BC′O、△CA′O的面积分别为S1、S2、S3,则S1+S2+S3
3
(填“>”或“<”或“=”).

查看答案和解析>>

科目:初中数学 来源:河北省期末题 题型:解答题

阅读下面材料:如图(1),把△ABC沿直线BC平行移动线段BC的长度,可以变到△DEC的位置;如图(2),以BC为轴,把△ABC翻折180°,可以变到△DBC的位置;如图(3),以点A为中心,把△ABC旋转180°,可以变到△AED的位置.像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.回答下列问题:
①在图(4)中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF的位置;
②指图中线段BE与DF之间的关系,为什么?

查看答案和解析>>

科目:初中数学 来源:第25章《图形的变换》常考题集(15):25.2 旋转变换(解析版) 题型:解答题

阅读下面材料:
如图(1),把△ABC沿直线BC平行移动线段BC的长度,可以变到△DEC的位置;
如图(2),以BC为轴,把△ABC翻折180°,可以变到△DBC的位置;
如图(3),以点A为中心,把△ABC旋转180°,可以变到△AED的位置.
像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.
回答下列问题:
①在图(4)中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF的位置;
②指图中线段BE与DF之间的关系,为什么?

查看答案和解析>>

同步练习册答案