【题目】综合与实践:
阅读理解:数学兴趣小组在探究如何求的值,经过思考、讨论、交流,得到以下思路:
如图1,作,使,,延长至点,使,连接.
设,则,..
请解决下列问题:
(1)类比求解:求出的值;
(2)问题解决:如图2,某住宅楼的后面有一建筑物,当光线与地面的夹角是时,住宅在建筑物的墙上留下高的影子;而当光线与地面的夹角是时,住宅楼顶在地面上的影子与墙角有的距离(,,在一条直线上).求住宅楼的高度(结果保留根号);
(3)探究发现:如图3,小明用硬纸片做了两个直角三角形,在中,,,;在中,,,.他将的斜边与的斜边重合在一起,并将沿方向移动.在移动过程中,,两点始终在边上(移动开始时点与点重合).探究在移动过程中,是否存在某个位置,使得?如果存在,直接写出的长度;如果不存在,请说明理由.
科目:初中数学 来源: 题型:
【题目】我校为了开阔学生的视野,积极组织学生参加校外拓展活动,现随机抽取我校的部分学生,调查他们最喜欢去的地方(A:方特,B:世界之窗,C:韶山,D:其他)进行数据统计,并绘制了两幅不完整的统计图(a),(b),请问:
(1)我校共调查了 名学生;
(2)将两幅统计图中不完整的部分补充完整;
(3)若我校共有学生6000人,请估计我校最喜欢去韶山的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点在的左侧),与轴交于点,点与关于抛物线的对称轴对称.
(1)求抛物线的解析式及点的坐标;
(2)点是抛物线上的一点,当的面积是8,求出点的坐标;
(3)过直线下方的抛物线上一点作轴的平行线,与直线交于点,已知点的横坐标是,试用含的式子表示的长及△ADM的面积,并求当的长最大时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】韬韬想在春节期间去外地过年,爸爸对韬韬说:你从背面朝上且相同,正面分别写有1、2、3的三张卡片中随机摸出一张卡片不放回,然后再随机摸出另一张卡片,若两次摸出的数字之和等于4,则满足你的愿望.
(1)采用画树状图法或列表法列出两次摸出卡片的所有可能结果;
(2)韬韬实现愿望的概率有多大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线,过点和点,与y轴交于点C,连接AC交x轴于点D,连接OA,OB
求抛物线的函数表达式;
求点D的坐标;
的大小是______;
将绕点O旋转,旋转后点C的对应点是点,点D的对应点是点,直线与直线交于点M,在旋转过程中,当点M与点重合时,请直接写出点M到AB的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上(如图所示).该小组在F处测得旗杆顶A的仰角为45°,平面镜E的俯角为67°,测得米,在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时).
求:(1)平面镜E到标杆底部D的距离.
(2)旗杆AB的高度.
(结果保留整数,参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=kx+b的图象与反比例函数的图象相交于A(﹣1,m),B(n,-1)两点.
(1)求出这个一次函数的表达式;
(2)求△OAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.
(1)求证:BD=CE;
(2)延长ED交BC于点F,求证:F为BC的中点;
(3)在(2)的条件下,若△ABC的边长为1,直接写出EF的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com