分析 根据13=12,13+23=32,13+23+33=62,13+23+33+43=102…可知,等式左边各项幂的底数的和等于右边幂的底数,再用等式表示出来即可.
解答 解:∵13=12,
13+23=(1+2)2,
13+23+33=(1+2+3)2,
13+23+33+43=(1+2+3+4)2
…,
∴13+23+…+n3=(1+2+…+n)2.
∴等式左边各项幂的底数的和等于右边幂的底数.
∴第n个式子为13+23+33+…+n3=(1+2+3+…+n)2=$\frac{1}{4}$n2(n+1)2.
验证:第5个式子为13+23+33+43+53=(1+2+3+4+5)2=225.
点评 此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 10 | B. | 11 | C. | 12 | D. | 13 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com