精英家教网 > 初中数学 > 题目详情
23、有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米.求鸡场的长和宽.
分析:可设垂直于墙的一边长x米,得到平行于墙的一边的长,根据面积为150列式求得平行于墙的一边的长小于18的值即可.
解答:解:设垂直于墙的一边长x米,则另一边长为(35-2x),列方程,得
x(35-2x)=150,
解得x1=10,x2=7.5,
当x=10时,35-2x=15<18,符合题意;
当x=7.5时,35-2x=20>18,不符合题意,舍去.
答:鸡场的长为15米,宽为10米.
点评:考查一元二次方程的应用;得到长方形的边长是解决本题的突破点;舍去不合题意的值是解决本题的易错点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:
S
6
=m;第二步:
m
=k;第三步:分别用3、4、5乘k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗请写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:数学公式=m;第二步:数学公式=k;第三步:分别用3、4、5乘k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗请写出证明过程.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

清朝康熙皇帝是我国历史上一位对数学很有兴趣的帝王,前不久,在西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题作出解法。“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数。”对这段话用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:;第二步:;第三步:分别用3、4、5乘以k,得三边长。”
(1)当面积S等于150时,请用康熙的“积求勾股法”求出直角三角形的三边长;
(2)你能说明“积求勾股法”的正确性吗?请写出说理过程。

查看答案和解析>>

科目:初中数学 来源:初三下学期数学好题难题集锦(解析版) 题型:解答题

清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:=m;第二步:=k;第三步:分别用3、4、5乘k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗请写出证明过程.

查看答案和解析>>

科目:初中数学 来源:2003年北京市西城区抽样测试初三试卷(解析版) 题型:解答题

(2003•西城区模拟)清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:=m;第二步:=k;第三步:分别用3、4、5乘k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗请写出证明过程.

查看答案和解析>>

同步练习册答案