分析 先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.
解答 解:∵P为AB的黄金分割点(AP>PB),
∴AP=$\frac{\sqrt{5}-1}{2}$AB=$\frac{\sqrt{5}-1}{2}$×10=5$\sqrt{5}$-5,
∴PB=AB-PA=10-(5$\sqrt{5}$-5)=(15-5$\sqrt{5}$)cm.
故答案为(15-5$\sqrt{5}$).
点评 本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=$\frac{\sqrt{5}-1}{2}$AB≈0.618AB,并且线段AB的黄金分割点有两个.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (4$\sqrt{2}$π+8π)cm | B. | B、(2$\sqrt{2}$π+4π)cm | C. | (4$\sqrt{2}$π+4π)cm | D. | (2$\sqrt{2}$π+8π)cm |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com