精英家教网 > 初中数学 > 题目详情
一条直线可以把一个平面分成两部分,两条直线可以把一个平面分成四部分,那么三条直线最多可以把一个平面分成几部分?四条直线呢?你能发现什么规律?
分析:作出三条直线、四条直线相交的情况,然后查出分成平面的部分数,再根据数据特点确定出变化规律即可得解.
解答:解:一条直线把一个平面分成2部分,
两条直线可以把一个平面分成4部分,
三条直线可以把一个平面分成7部分,
四条直线可以把一个平面分成11部分,
…,
设a1=2,a2=4,a3=7,a4=11,…,
则a2-a1=2,
a3-a2=3,
a4-a3=4,
a5-a4=5,
…,
an-an-1=n,
所以,an=2+2+3+4+5+…+n=1+1+2+3+4+5+…+n=
n(n+1)
2
+1,
故,n条直线可以把一个平面分成
n(n+1)
2
+1部分.
点评:本题考查了直线、射线、线段的知识,判断出相邻直线条数分成平面的部分的差是连续的自然数是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(1)自主阅读:如图1,AD∥BC,连接AB、AC、BD、CD,则S△ABC=S△BCD
证明:分别过点A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因为S△ABC=
1
2
×BC×AF,S△BCD=
1
2
×
BC×DE
所以S△ABC=S△BCD
由此我们可以得到以下的结论:像图1这样,
同底等高的两三角形面积相等
同底等高的两三角形面积相等

(2)结论证明:如果一条直线(线段)把一个平面图形的面积分成相等的两部分,我们把这条直线(线段)称为这个平面图形的一条面积等分线(段),如,平行四变形的一条对角线就是平形四边形的一条面积等分线段.
①如图2,梯形ABCD中AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,则AP即为梯形ABCD的面积等分线段,请你写出这个结论成立的理由:
②如图3,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否做出四边形ABCD的面积等分线(段)?若能,请画出面积等分线(用钢笔或圆珠笔画图,不用写作法),不要证明

查看答案和解析>>

科目:初中数学 来源:新教材完全解读 七年级数学 (下册) (配人教版新课标) (第1次修订版) 配人教版新课标 题型:044

(1)一条直线可以把平面分成两部分,如图所示,两条直线可以把平面分面几个部分?三条直线可以把平面分成几个部分?试画图说明.

(2)四条直线最多可以把平面分成几个部分?试画出示意图,并说明这四条直线的位置关系.

(3)平面上有n条直线,每两条直线都恰好相交,且没有三条直线交于点一点,处于这种位置的n条直线分一个平面所成的区域最多,记为an,试写出an与n之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝(1)一条直线可以把平面分成两个部分(或区域),如图,两条直线可以把平面分成几个部分?三条直线可以把平面分成几个部分?试画图说明.
(2)四条直线最多可以把平面分成几个部分?试画出示意图,并说明这四条直线的位置关系.
(3)平面上有n条直线.每两条直线都恰好相交,且没有三条直线交于一点,处于这种位置的n条直线分一个平面所成的区域最多,记为an,试研究an与n之间的关系.

查看答案和解析>>

科目:初中数学 来源:2013年山东省青岛市中考数学模拟试卷(八)(解析版) 题型:解答题

(1)自主阅读:如图1,AD∥BC,连接AB、AC、BD、CD,则S△ABC=S△BCD
证明:分别过点A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因为S△ABC=×BC×AF,S△BCD=BC×DE
所以S△ABC=S△BCD
由此我们可以得到以下的结论:像图1这样,______.
(2)结论证明:如果一条直线(线段)把一个平面图形的面积分成相等的两部分,我们把这条直线(线段)称为这个平面图形的一条面积等分线(段),如,平行四变形的一条对角线就是平形四边形的一条面积等分线段.
①如图2,梯形ABCD中AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,则AP即为梯形ABCD的面积等分线段,请你写出这个结论成立的理由:
②如图3,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否做出四边形ABCD的面积等分线(段)?若能,请画出面积等分线(用钢笔或圆珠笔画图,不用写作法),不要证明

查看答案和解析>>

科目:初中数学 来源:2013年山东省青岛市中考数学模拟试卷(四)(解析版) 题型:解答题

(1)自主阅读:如图1,AD∥BC,连接AB、AC、BD、CD,则S△ABC=S△BCD
证明:分别过点A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因为S△ABC=×BC×AF,S△BCD=BC×DE
所以S△ABC=S△BCD
由此我们可以得到以下的结论:像图1这样,______.
(2)结论证明:如果一条直线(线段)把一个平面图形的面积分成相等的两部分,我们把这条直线(线段)称为这个平面图形的一条面积等分线(段),如,平行四变形的一条对角线就是平形四边形的一条面积等分线段.
①如图2,梯形ABCD中AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,则AP即为梯形ABCD的面积等分线段,请你写出这个结论成立的理由:
②如图3,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否做出四边形ABCD的面积等分线(段)?若能,请画出面积等分线(用钢笔或圆珠笔画图,不用写作法),不要证明

查看答案和解析>>

同步练习册答案