精英家教网 > 初中数学 > 题目详情
17.今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.
 等级 得分x(分) 频数(人)
 A 95≤x≤100 4
 B 90≤x<95 m
 C 85≤x<90 n
 D 80≤x<85 24
 E 75≤x<80 8
 F 70≤x<75 4
请根据图表提供的信息,解答下列问题:
(1)本次抽样调查样本容量为80,表中:m=12,n=8;扇形统计图中,E等级对应扇形的圆心角α等于36度;
(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.

分析 (1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;
(2)画出树状图即可解决问题.

解答 解:(1)本次抽样调查样本容量为24÷30%=80,
则m=80×15%=12,n=80-(4+12+24+8+4)=28,
扇形统计图中,E等级对应扇形的圆心角α=360°×$\frac{8}{80}$=36°,
故答案为:80,12,8,36;

(2)树状图如图所示,

∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,
∴抽取两人恰好是甲和乙的概率是$\frac{1}{6}$.

点评 本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知四边形ABCD的一组对边AD、BC的延长线交于点E.
(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;
(2)如图2,若∠ABC=120°,cos∠ADC=$\frac{3}{5}$,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;
(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=$\frac{3}{5}$,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为1.08a元.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查
B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95
C.“打开电视,正在播放乒乓球比赛”是必然事件
D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简,再求值:$\frac{1}{a-3}$-$\frac{6}{{a}^{2}-9}$,其中a=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图的几何体,其左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.
(1)求证:DF是⊙O的切线;
(2)若AE=4,cosA=$\frac{2}{5}$,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查,每降价1元,每星期可多卖出20件,在确保盈利的前提下,解答下列问题:
(1)若设每件降价x(x为整数)元,每星期售出商品的利润为y元,请写出x与y之间的函数关系式,并求出自变量x的取值范围;
(2)请画出上述函数的大致图象.
(3)当降价多少元时,每星期的利润最大?最大利润是多少?
小丽解答过程如下:
解:(1)根据题意,可列出表达式:
y=(60-x)(300+20x)-40(300+20x),
即y=-20x2+100x+6000.
∵降价要确保盈利,∴40<60-x≤60.解得0≤x<20.
(2)上述表达式的图象是抛物线的一部分,函数的大致图象如图1:
(3)∵a=-20<0,
∴当x=-$\frac{b}{2a}$=2.5时,y有最大值,y=$\frac{4ac-{b}^{2}}{4a}$=6125.
所以,当降价2.5元时,每星期的利润最大,最大利润为6125.
老师看了小丽的解题过程,说小马第(1)问的表达式是正确的,但自变量x的取值范围不准确.(2)(3)问的答案,也都存在问题.请你就老师说的问题,进行探究,写出你认为(1)(2)(3)中正确的答案,或说明错误原因.

查看答案和解析>>

同步练习册答案