精英家教网 > 初中数学 > 题目详情
8.已知有理数a,b,c满足abc<0,且a,b,c同号,若x=$\frac{|a|}{a}$+$\frac{|b|}{b}$+$\frac{|c|}{c}$,求代数式-x2+6x-2的值.

分析 先依据题意可得到a、b、c均为负数,从而可得到x=-3,最后,将x的值代入计算即可.

解答 解:∵abc<0,且a,b,c同号,
∴a<0,b<0,c<0.
∴x=-3.
∴原式=-(-3)2+6×(-3)-2=-9+(-18)+(-2)=-29.

点评 本题主要考查的是绝对值的性质、求代数式的值,求得x的值是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,直线y=-$\frac{4}{3}$x+4与x轴、y轴的交点分别为B,C,点A的坐标为(-2,0).
(1)求点B,C的坐标.
(2)尺规作图,作点D,使A,B,C,D是构成菱形的四个顶点.并写出点D的坐标.
(3)若E(0,a)是平面直角坐标系上的定点,a=$\sqrt{4-n}$,a,n均为非负整数,点P是直线BD上的动点,求当CP+EP取得最小值时,点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,若BC∥DE∥AF 则下列结论中:
①?△ADE∽△ABC 
②$\frac{FC}{FE}$=$\frac{AB}{AE}$;
③若AD=4,AC=5,则AF:DE=4:5;
④$\frac{AF}{DE}$=$\frac{AB}{BE}$;
正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某地电话上网有A B两种收费方式,用户可以任选其一,收费方式A(计时制):0.05元/分;收费方式B(包月制)50元/月(限一部个人住宅电话上网);每种收费方式对上网时间都得加收通信费0.02元/分.某一用户一周内上网时间记录如下:周一 32分 周二 40分 周三 36分 周四 42分 周五 35分 周六 47分 周日 48分
(1)计算该用户一周内平均每天上网的时间;
(2)设改用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户支付的费用;
(3)如果该用户在一个月内(30天),按(1)中的平均每天上网时间计算,你认为采用哪种方式支付费用较为合算?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.请从以下三个一元二次方程中任选两个,并用适当的方法解这两个方程.
(1)x2+4x-1=0; 
(2)2x2-4x+1=0; 
(3)x(x-3)=15-5x.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.“石油之光”是大庆市市标,如图,某兴趣小组利用课余时间研究市标的高度,在市标底部点A处沿着AC方向走到点B处,在点B处观察市标顶部,测得仰角为60°,继续沿AC方向走13米到点C处,在点C处测得仰角为45°,则市标AD的高度为30.7米(图中AD⊥AC,$\sqrt{2}≈1.41$,$\sqrt{3}≈1.73$,$\sqrt{5}≈2.24$,结果保留一位小数)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,D为对角线OB的中点,反比例函数y=$\frac{k}{x}$在第一象限内的图象经过点D,且与AB、BC分别交于点E,F,点B的坐标为(2$\sqrt{3}$,2).
(1)求反比例函数的解析式;
(2)连接DE,求△BDE的面积;
(3)直接写出在第一象限内当x满足什么条件时,直线FD的函数值大于反比例函数y=$\frac{k}{x}$的函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=1,将△ABC绕点C顺时针旋转得△A1B1C1,且点A1落在边AB边上,取BB1的中点D,连接CD,则CD的长为(  )
A.$\frac{3}{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.关于x的方程kx2+(k+2)x+$\frac{k}{4}$=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果原方程的两根分别为x1、x2,且k2x12-4kx1x2+k2x22的值为12,求k的值.

查看答案和解析>>

同步练习册答案