精英家教网 > 初中数学 > 题目详情
(2013•闸北区一模)已知:如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,EC和BD相交于点O,联接DE.
(1)求证:△EOD∽△BOC;
(2)若S△EOD=16,S△BOC=36,求
AEAC
的值.
分析:(1)首先证明△BOE∽△COD,由相似三角形的性质可得
OE
OB
=
OD
OC
,又因为∠EOD=∠BOC,所以:△EOD∽△BOC;
(2)由面积之比可得到对应边之比即
OD
OC
=
2
3
,在△ODC与△EAC中,因为∠AEC=∠ODC,∠OCD=∠ACE,所以△ODC∽△AEC,利用相似的性质即可求出
AE
AC
的值.
解答:(1)证明:在△BOE与△DOC中,
∵∠BEO=∠CDO,∠BOE=∠COD,
∴△BOE∽△COD,
OE
OD
=
OB
OC

OE
OB
=
OD
OC

又∵∠EOD=∠BOC,
∴△EOD∽△BOC;

(2)解:∵△EOD∽△BOC
S△EOD
S△BOC
=(
OD
OC
)2

∵S△EOD=16,S△BOC=36,
OD
OC
=
2
3

在△ODC与△EAC中,
∵∠AEC=∠ODC,∠OCD=∠ACE,
∴△ODC∽△AEC,
OD
AE
=
OC
AC

OD
OC
=
AE
AC

AE
AC
=
2
3
点评:本题考查了相似三角形的判定和性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,二次函数y=
2
3
x2-
4
3
x-
16
3
的图象与x轴交于点A、B(点A在点B的左侧),抛物线的顶点为Q,直线QB与y轴交于点E.
(1)求点E的坐标;
(2)在x轴上方找一点C,使以点C、O、B为顶点的三角形与△BOE相似,请直接写出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)在坡度为i=1:2.4的斜坡上每走26米就上升了
10
10
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点M、N分别在边AO和边OD上,且AM=
2
3
AO,ON=
1
3
OD,设
AB
=
a
BC
=
b
,试用
a
b
的线性组合表示向量
OM
和向量
MN

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,在△ABC中,AB=AC=15,cos∠A=
45
.点M在AB边上,AM=2MB,点P是边AC上的一个动点,设PA=x.
(1)求底边BC的长;
(2)若点O是BC的中点,联接MP、MO、OP,设四边形AMOP的面积是y,求y关于x的函数关系式,并出写出x的取值范围;
(3)把△MPA沿着直线MP翻折后得到△MPN,是否可能使△MPN的一条边(折痕边PM除外)与AC垂直?若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案