精英家教网 > 初中数学 > 题目详情
如图,已知二次函数的图象与x轴交于A(2,0)、B(6,0)两点,与y轴交于点D(0,4).
(1)求该二次函数的表达式;
(2)写出该抛物线的顶点C的坐标;
(3)求四边形ACBD的面积?
(1)设二次函数的解析式为y=a(x-2)(x-6),
把D(0,4)代入得a×(-2)×(-6)=4,解得a=
1
3

所以二次函数的解析式为y=
1
3
(x-2)(x-6)=
1
3
x2-
8
3
x+4;

(2)y=
1
3
(x-2)(x-6)=
1
3
(x2-8x)+4=
1
3
(x-4)2-
4
3

所以该抛物线的顶点C的坐标为(4,-
4
3
);

(3)S四边形ACBD=S△ADB+S△ACB
=
1
2
×4×4+
1
2
×4×
4
3

=
32
3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)
(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;
(2)桥洞两侧壁上各有一盏景观灯E、F,两灯直射地面分别形成反光点H、G(E、F分别在抛物线上且关于OC对称,H、G在线段AB上),量得矩形EFGH的周长为27.5米,现公园管理人员对拱桥加固维修,在点H、G处搭建一个高3.5米的矩形“脚手架”GHMN,已知“脚手架”最高处距景观灯至少为0.35米可保证安全,请问该“脚手架”的安装是否符合要求?如果符合,请说明理由;如果不符合,求出脚手架至少应调低多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(-2,0),O(0,0),B(0,2),把Rt△AOB绕着点O顺时针旋转90°得到Rt△BOC,(点A旋转到点B的位置),抛物线y=ax2+bx+c(a≠0)经过B,C两点,与x轴的另一个交点为点D,顶点为点P,对称轴为直线x=3,
(1)求该抛物线的解析式;
(2)连接BC,CP,PD,BD,求四边形PCBD的面积;
(3)在抛物线上是否存在一点M,使得△MDC的面积等于四边形PCBD的面积
1
3
?如果存在,求出点M的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,有一抛物线形拱桥,拱顶M距桥面1米,桥拱跨度AB=12米,拱高MN=4米.
(1)求表示该拱桥抛物线的解析式;
(2)按规定,汽车通过桥下时载货最高处与桥拱之间的距离CD不得小于0.5米.今有一宽4米,高2.5米(载货最高处与地面AB的距离)的平顶运货汽车要通过拱桥,问该汽车能否通过?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某建筑物的窗口如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m,当半圆的半径为多少时,窗户通过的光线最多?此时,窗户的面积是多少(结果精确到0.01m)?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A,O,D三点,图2和图3是把一些这样的小正方形及其内部的抛物线部分经过平移和对称变换得到的.
(1)求a的值;
(2)求图2中矩形EFGH的面积;
(3)求图3中正方形PQRS的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:
v/(km/h)406080100120
s/m24.27.21115.6
(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连接各点;
(2)利用图象验证刹车距离s(m)与车速v(km/h)是否有如下关系:s=
1
1000
v2+
1
100
v0

(3)求当s=9m时的车速v.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

东方商厦专销某品牌的计算器,已知每只计算器的进价是12元,售价是20元.为了促销,商厦决定:凡是一次性购买10只以上(不含10只)的顾客,每多买1只计算器,其购买的每只计算器的售价就降低O.10元(假设顾客购买了18只计算器,则每只计算器售价为:20-0.10×(18-10)=19.20元,顾客应付的购货款为:18×19.20=345.60元),但最低售价为16元/只.
(1)求顾客至少一次性购买多少只计算器,才能以最低价购买?
(2)设顾客一次性购买x(10<x≤50)只计算器时,东方商厦可获利润y(元),试求y与x之间的函数关系式及商厦的最大利润;
(3)有一天,一位顾客一次性购买了46只计算器,另一位顾客一次性购买了50只计算器,结果商厦发现卖50只反而比卖46只赚的钱少.为了使每次获利随着销量的增大而增大,在其他促销条件不变的情况下,商厦应将最低价16元/只至少提高到多少?为什么?

查看答案和解析>>

同步练习册答案