精英家教网 > 初中数学 > 题目详情
(2013•东城区一模)问题1:如图1,在等腰梯形ABCD中,AD∥BC,AB=BC=CD,点M,N分别在AD,CD上,若∠MBN=
1
2
∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想,不用证明;
问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD的延长线上,若∠MBN=
1
2
∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎样的数量关系?写出你的猜想,并给予证明.
分析:(1)先判定梯形ABCD是等腰梯形,根据等腰梯形的性质可得∠A+∠BCD=180°,再把△ABM绕点B顺时针旋转使点A与点C重合,点M到达点M′,根据旋转变换的性质,△ABM和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,根据全等三角形对应角相等可得∠A=∠BCM′,∠ABM=∠M′BC,然后证明M′、C、N三点共线,再利用“边角边”证明△BMN和△BM′N全等,然后根据全等三角形对应边相等即可得证;
(2)在∠CBN内部作∠CBM′=∠ABM交CN于点M′,然后证明∠C=∠BAM,再利用“角边角”证明△ABM和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,再证明∠MBN=∠M′BN,利用“边角边”证明△MBN和△M′BN全等,根据全等三角形对应边相等可得MN=M′N,从而得到MN=CN-AM.
解答:解:(1)MN=AM+CN.
理由如下:
如图,∵BC∥AD,AB=BC=CD,
∴梯形ABCD是等腰梯形,
∴∠A+∠BCD=180°,
把△ABM绕点B顺时针旋转90°到△CBM′,则△ABM≌△CBM′,
∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,
∴∠BCM′+∠BCD=180°,
∴点M′、C、N三点共线,
∵∠MBN=
1
2
∠ABC,
∴∠M′BN=∠M′BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=
1
2
∠ABC,
∴∠MBN=∠M′BN,
在△BMN和△BM′N中,
BM=BM′
∠MBN=∠M′BN
BN=BN

∴△BMN≌△BM′N(SAS),
∴MN=M′N,
又∵M′N=CM′+CN=AM+CN,
∴MN=AM+CN;

(2)猜想的结论:MN=CN-AM.
理由如下:如图,作∠CBM′=∠ABM交CN于点M′,
∵∠ABC+∠ADC=180°,
∴∠BAD+∠C=360°-180°=180°,
又∵∠BAD+∠BAM=180°,
∴∠C=∠BAM,
在△ABM和△CBM′中,
∠CBM′=∠ABM
AB=BC
∠C=∠BAM

∴△ABM≌△CBM′(ASA),
∴AM=CM′,BM=BM′,
∵∠MBN=
1
2
∠ABC,
∴∠M′BN=∠ABC-(∠ABN+∠CBM′)=∠ABC-(∠ABN+∠ABM)=∠ABC-∠MBN=
1
2
∠ABC,
∴∠MBN=∠M′BN,
在△MBN和△M′BN中,
BM=BM′
∠MBN=∠M′BN
BN=BN

∴△MBN≌△M′BN(SAS),
∴MN=M′N,
∵M′N=CN-CM′=CN-AM,
∴MN=CN-AM.
点评:本题考查了旋转的性质,全等三角形的判定与性质,等腰梯形的两底角互补,利用旋转变换作辅助线,构造出全等三角形,把MN、AM、CN通过等量转化到两个全等三角形的对应边是解题的关键,本题灵活性较强,对同学们的能力要求较高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•东城区一模)已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根;
(2)当m为何整数时,原方程的根也是整数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东城区一模)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S2=0.90,S2=1.22,S2=0.43,S2=1.68,在本次射击测试中,成绩最稳定的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东城区一模)如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是(  )
作法:以O为圆心,任意长为半径作弧,交OA,OB于点D,E.
          分别以D,E为圆心,以大于
1
2
DE
的长为半径作弧,两弧在∠AOB内交于点C.
作射线OC.则OC就是∠AOB的平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东城区一模)已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.则阴影部分的面积是
π-2
π-2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东城区一模)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2013个正方形的面积为
5×(
9
4
2012
5×(
9
4
2012

查看答案和解析>>

同步练习册答案