精英家教网 > 初中数学 > 题目详情
观察下面的变形规律:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
;…
解答下面的问题:
(1)计算
1
5×6
=
1
5
-
1
6
1
5
-
1
6

(2)若n为正整数,请你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(3)利用你的结论求:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
分析:(1)(2)将分数拆分即可求解;
(3)先将分数拆分,再用抵消法即可求解.
解答:解:(1)
1
5×6
=
1
5
-
1
6

(2)
1
n(n+1)
=
1
n
-
1
n+1

(3)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10

=1-
1
2
+
1
2
-
1
3
+…+
1
9
-
1
10

=1-
1
10

=
9
10

故答案为:
1
5
-
1
6
1
n
-
1
n+1
点评:考查了分数拆分和抵消法的灵活运用,注意
1
n(n+1)
=
1
n
-
1
n+1
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

观察下面的变形规律:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
;…
解答下面的问题:
(1)若n为正整数,请你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)证明你猜想的结论;
(3)求和:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2009×2010

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平和县质检)观察下面的变形规律:
1
1×2
=1-
1
2
; 
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
;…
解答下面的问题:
(1)若n为正整数,请你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)证明你猜想的结论;
(3)求和:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下面的变形规律:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
;…
1
2013×2014
=
1
2013
-
1
2014

解答下面的问题:
(1)试求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2013×2014

(2)若n为正整数,请你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(3)请你根据变形规律进行适当变形,求
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2013×2015

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下面的变形规律:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
;…
请根据以上变形规律解答下面的问题:
(1)求:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012
 的值.
(2)求:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2011×2013
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下面的变形规律:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
;…解答下面的问题:
(1)若n为正整数,请你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)求和:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011

查看答案和解析>>

同步练习册答案