精英家教网 > 初中数学 > 题目详情

是一次函数图象上不同的两点,若,则t______0(填“<”或“>”或“≤”或“≥”).

 

解析:∵A(x1,y1)、B(x2,y2)是一次函数y=kx+2(k>0)图象上不同的两点,

∴y1=kx1+2,y2=kx2+2,

∴y1-y2=k(x1-x2);

∴t=(x1-x2)(y1-y2)=k(x1-x22

∵A、B是一次函数y=kx+2图象上不同的两点,

∴x1-x2≠0

∴(x1-x22>0;

又k>0,

∴t=k(x1-x22>0;

故答案是:t>0.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=x2+bx+c图象的对称轴是直线x=2,且过点A(0,3).
(1)求b、c的值;
(2)求出该二次函数图象与x轴的交点B、C的坐标;
(3)如果某个一次函数图象经过坐标原点O和该二次函数图象的顶点M.问在这个一次函数图象上是否存在点P,使得△PBC是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海南)如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.
(1)求该二次函数的解析式;
(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;
(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,
①连接AN,当△AMN的面积最大时,求t的值;
②线段PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.
(1)求该二次函数的解析式;
(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;
(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,
①求t的值;
②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2013年海南省中考数学试卷(解析版) 题型:解答题

如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.
(1)求该二次函数的解析式;
(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;
(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,
①求t的值;
②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2010年云南省德宏州中考数学试卷(解析版) 题型:解答题

(2010•德宏州)已知二次函数y=x2+bx+c图象的对称轴是直线x=2,且过点A(0,3).
(1)求b、c的值;
(2)求出该二次函数图象与x轴的交点B、C的坐标;
(3)如果某个一次函数图象经过坐标原点O和该二次函数图象的顶点M.问在这个一次函数图象上是否存在点P,使得△PBC是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案