【题目】如图,在菱形ABCD中,AC、BD交于点O,BD=8,AC=4,DP∥AC,CP∥BD.
(1)求线段OP的长;
(2)不添加任何辅助线的情况下,直接写出图中所有的平行四边形.
【答案】(1)OP=2;(2)四边形ABCD、四边形BOPC、四边形OCPD、四边形AOPD都是平行四边形.
【解析】
(1)根据题目条件可以得出四边形OCPD是平行四边形,因为四边形ABCD是菱形,则可证出四边形OCPD是矩形,最后利用勾股定理即可求解.
(2)根据平行四边形的性质,找出图中所有的平行四边形即可.
(1)解:∵DP∥AC,CP∥BD,
∴四边形OCPD是平行时四边形,
∵四边形ABCD是菱形,
∴BD⊥AC,AO=OC=2,OB=OD=4,
∴∠COD=90°,
∴四边形OCPD是矩形,
∴CD=OP.
在Rt△COD中,根据勾股定理得CD=2,
∴OP=CD=2.
(2)四边形ABCD、四边形BOPC、四边形OCPD、四边形AOPD都是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,已知点A(m,m+3),点B(n,n﹣3)是反比例函数y=(k>0)在第一象限的图象上的两点,连接AB.将直线AB向下平移3个单位得到直线l,在直线l上任取一点C,则△ABC的面积为( )
A.B.6C.D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.
(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么ABCD的周长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是 ,位置关系是 ;
(2)探究证明:如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC的延长线上时,连接EC,写出此时线段AD,BD,CD之间的等量关系,并证明;
(3)拓展延仲:如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,请直接写出AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.
(1)求抛物线的解析式;
(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?
(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:抛物线y=ax2﹣3(a﹣1)x+2a﹣6(a>0).
(1)求证:抛物线与x轴有两个交点.
(2)设抛物线与x轴的两个交点的横坐标分别为x1,x2(其中x1>x2).若t是关于a的函数、且t=ax2﹣x1,求这个函数的表达式;
(3)若a=1,将抛物线向上平移一个单位后与x轴交于点A、B.平移后如图所示,过A作直线AC,分别交y的正半轴于点P和抛物线于点C,且OP=1.M是线段AC上一动点,求2MB+MC的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为( )
A.3B.C.D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其它四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:
类别 | 频数(人数) | 频率 |
文学 | m | 0.42 |
艺术 | 22 | 0.11 |
科普 | 66 | n |
其他 | 28 | |
合计 | 1 |
(1)表中m= ,n= ;
(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最少?
(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com