精英家教网 > 初中数学 > 题目详情
12.在式子$\sqrt{22}$、$\root{3}{5}$、$\sqrt{{a}^{2}+3}$、$\sqrt{x-2}$、$\sqrt{a}$中,二次根式有(  )
A.2个B.3个C.4个D.5个

分析 根据二次根式的定义:一般地,我们把形如$\sqrt{a}$(a≥0)的式子叫做二次根式可得答案.

解答 解:$\sqrt{22}$、$\sqrt{{a}^{2}+3}$符合二次根式的定义,属于二次根式;
$\sqrt{x-2}$中当x-2<0即x<2时,该式子无意义;
$\sqrt{a}$中当a<0时,该式子无意义;
故选:A.

点评 此题主要考查了二次根式的定义,关键是掌握二次根式中的被开方数为非负数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.解方程:$\frac{x+2}{x-2}$-$\frac{4}{{{x^2}-4}}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:
5640   6430    6520  6798  7325
8430   8215    7453  7446  6754
7638   6834    7326  6830  8648
8753   9450    9865  7290  7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表
组别步数分组频数
A5500≤x<65002
B6500≤x<750010
C7500≤x<8500m
D8500≤x<95003
E9500≤x<10500n
请根据以上信息解答下列问题:
(1)求m,n的值;
(2)补全频数发布直方图;
(3)这20名“健步走运动”团队成员一天行走步数的中位数落在哪一组?
(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AB是半圆O的直径,射线AM⊥AB,点P在AM上,连接OP交半圆O于点D,PC切半圆O于点C,连接BC,OC.
(1)求证:△OAP≌△OCP;
(2)若半圆O的半径等于2,填空:
①当AP=2时,四边形OAPC是正方形;
②当AP=2$\sqrt{3}$时,四边形BODC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=2,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.不等式-$\frac{1}{2}$x+1>0的正整数解是1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包,现有一用户发了三个“拼手气红包”,总金额为6元,随机被甲、乙、丙三人抢到.
(1)判断下列事件中,哪些是确定事件,哪些不是确定事件?
①甲抢到金额为7元的红包.②乙抢到4元的红包.③甲、丙两人抢到的红包金额之和比乙抢到的红包金额少.
(2)如记金额最多、金额居中、金额最少的红包分别为A、B、C.
①求甲抢到红包A的概率.
②若甲没抢到红包A,则乙能抢到红包A的概率又是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图所示,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若△ABC的周长为10cm,则△OEC的周长为5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:
月用水量/m34568910
户数679521
则这30户家庭的月用水量的众数和中位数分别是(  )
A.6,6B.9,6C.9,6D.6,7

查看答案和解析>>

同步练习册答案