【题目】(12分)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(-4,0),B(2,0),C(3,3),反比例函数y=的图象经过点C.
(1)求此反比例函数的解析式;
(2)将平行四边形ABCD沿x轴翻折得到平行四边形ABC′D′,请说明点D′在双曲线上;
(3)连接AC,CD′,求△ACD′的面积.
【答案】(1);(2)点D′在双曲线上;(3)12.
【解析】试题分析:(1)根据反比例函数图象点的坐标特征把C点坐标代入y=,求出k的值即可确定反比例函数解析式;
(2)先计算出AB=10,再根据平行四边形的性质得CD=10,则可确定D点坐标为(-5,3),然后根据关于x轴对称的点的坐标特征得D′的坐标为(-5,-3)再根据反比例函数图象点的坐标特征判断点D′在双曲线上;
(3)由于点C坐标为(5,3),D′的坐标为(-5,-3),则点C和点D′关于原点中心对称,根据中心对称的性质得点D′、O、C共线,且OC=OD′,然后利用S△AD′C=S△AD′O+S△AOC=2S△AOC进行计算.
试题解析:(1)∵C(5,3)在反比例函数y=的图象上,
∴=3,
∴k=15,
∴反比例函数解析式为y=;
(2)∵A(-6,0),B(4,0),
∴AB=10,
∵四边形ABCD为平行四边形,
∴CD=10,
而C点坐标为(5,3),
∴D点坐标为(-5,3),
∵平行四边形ABCD和平行四边形AD′C′B关于x轴对称,
∴D′的坐标为(-5,-3),
∵-5×(-3)=15,
∴点D′在双曲线y=上;
(3)如图,
∵点C坐标为(5,3),D′的坐标为(-5,-3),
∴点C和点D′关于原点中心对称,
∴点D′、O、C共线,且OC=OD′,
∴S△AD′C=S△AD′O+S△AOC=2S△AOC=2××6×3=18.
科目:初中数学 来源: 题型:
【题目】完成下面的证明过程:
如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.
求证:∠A=∠D.
证明:∵∠1=∠2,(已知)∠2=∠AGB( )
∴∠1= ( )
∴EC∥BF( )
∴∠B=∠AEC( )
又∵∠B=∠C(已知)
∴∠AEC= ( )
∴ ( )
∴∠A=∠D( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠BAC=90°,D是AC的中点,CE⊥BD于点E,交BA的延长线于点F.若BF=12,则△FBC的面积为( )
A. 40 B. 46 C. 48 D. 50
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根
据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名同学;
(2)条形统计图中,m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .
(1)求证: △ABE≌△CDF ;
(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.
(1)△BDF是什么三角形?请说明理由;
(2)设AD=x,CF=y,试求y与x之间的函数关系式;(不用写出自变量x的取值范围)
(3)当移动点D使EF∥AB时,求AD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在相邻两点距离为1的点阵纸上(左右相邻或上下相邻的两点之间的距离都是1个单位长度),三个顶点都在点阵上的三角形叫做点阵三角形,请按要求完成下列操作:
(1)将点阵△ABC水平向右平移4个单位长度,再竖直向上平移5个单位长度,画出平移后的△A1B1C1;
(2)连接AA1、BB1,则线段AA1、BB1的位置关系为 、数量关系为 .估计线段AA1的长度大约在 <AA1< 单位长度:(填写两个相邻整数);
(3)画出△ABC边AB上的高CD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com