精英家教网 > 初中数学 > 题目详情
如图,A是以BC为直径的⊙O上一点,于点D,AD⊥BC过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且⊙O的半径长为,求BD和FG的长度.

【答案】分析:(1)根据切线判定知道EB⊥BC,而AD⊥BC,从而可以确定AD∥BE,那么△BFC∽△DGC,又G是AD的中点,就可得出结论BF=EF.
(2)要证PA是⊙O的切线,就是要证明∠PAO=90°连接AO,AB,根据第1的结论和BE是⊙O的切线和直角三角形的等量代换,就可得出结论.
(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性和勾股定理,可以求出BD和FG的长度.
解答:(1)证明:∵BC是⊙O的直径,BE是⊙O的切线,
∴EB⊥BC.
又∵AD⊥BC,
∴AD∥BE.
∵△BFC∽△DGC,△FEC∽△GAC,


∵G是AD的中点,
∴DG=AG.
∴BF=EF.

(2)证明:连接AO,AB,
∵BC是⊙O的直径,
∴∠BAC=90°.
在Rt△BAE中,由(1),知F是斜边BE的中点,
∴AF=FB=EF.
∴∠FBA=∠FAB.
又∵OA=OB,
∴∠ABO=∠BAO.
∵BE是⊙O的切线,
∴∠EBO=90°.
∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA是⊙O的切线.

(3)解:过点F作FH⊥AD于点H,
∵BD⊥AD,FH⊥AD,
∴FH∥BC.
由(2),知∠FBA=∠BAF,
∴BF=AF.
由已知,有BF=FG,
∴AF=FG,即△AFG是等腰三角形.
∵FH⊥AD,
∴AH=GH.
∵DG=AG,
∴DG=2HG.

∵FH∥BD,BF∥AD,∠FBD=90°,
∴四边形BDHF是矩形,BD=FH.
∵FH∥BC,易证△HFG∽△DCG,


∵⊙O的半径长为3
∴BC=6

解得BD=2
∴BD=FH=2

∴CF=3FG.
在Rt△FBC中,
∵CF=3FG,BF=FG,
∴CF2=BF2+BC2∴(3FG)2=FG2+(62
解得FG=3(负值舍去)
∴FG=3.
点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图有一个矩形花坛ABCD,有个别人贪图方便,从E点直插过去到C点,已知BE=7米,BC=24米,那么这些人以践踏花草为代价,仅仅是只少走了
6
米的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,矩形ABCO的边OA在y正半轴上,OC在x正半轴上,点D是线段OC上一点,过点D作DE⊥AD交直线BC于点E,以A、D、E为顶点作矩形ADEF.
(1)求证:△AOD∽△DCE;
(2)若点A坐标为(0,4),点C坐标为(7,0).
①当点D的坐标为(5,0)时,抛物线y=ax2+bx+c过A、F、B三点,求点F的坐标及a、b、c的值;
②若点D(k,0)是线段OC上任意一点,点F是否还在①中所求的抛物线上?如果在,请说明理由;如果不在,请举反例说明;
(3)若点A的坐标是(0,m),点C的坐标是(n,0),当点D在线段OC上运动时,是否也存在一条抛物线,使得点F都落在该抛物线上?若存在,请直接用含m精英家教网、n的代数式表示该抛物线;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北)一透明的敞口正方体容器ABCD-A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究 如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.
解决问题:
(1)CQ与BE的位置关系是
CQ∥BE
CQ∥BE
,BQ的长是
3
3
dm;
(2)求液体的体积;(参考算法:直棱柱体积V=底面积S△BCQ×高AB)
(3)求α的度数.(注:sin49°=cos41°=
3
4
,tan37°=
3
4


拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.
延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省金华四中九年级毕业生学业考试模拟数学卷(带解析) 题型:解答题

如图1,在等腰梯形ABCO中,ABCOEAO的中点,过点EEFOCBCFAO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OCx轴正半轴上,点AB在第一象限内.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点PPMEFOC于点M,过MMNAO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为EDGH′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形EDGH′重合部分的面积y与时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2012届浙江省九年级毕业生学业考试模拟数学卷(解析版) 题型:解答题

如图1,在等腰梯形ABCO中,ABCOEAO的中点,过点EEFOCBCFAO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OCx轴正半轴上,点AB在第一象限内.

(1)求点E的坐标及线段AB的长;

(2)点P为线段EF上的一个动点,过点PPMEFOC于点M,过MMNAO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.

①求S关于x的函数关系式;

②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为EDGH′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形EDGH′重合部分的面积y与时间t的函数关系式.

 

查看答案和解析>>

同步练习册答案