精英家教网 > 初中数学 > 题目详情
已知:在△中,于点相交于.

(1)求的度数;
(2)求证:△≌△
(3)探究的数量关系,并给予证明.
(1)45°;
(2)∵在△EBC中,∠ECB=∠ABC
∴EB=EC
∵在△ABC中,BD⊥AC于D,CE⊥AB于E
∴∠BEC=∠BDC= 90°
∴∠A+∠ACE=∠A+∠ABD=90°
∴∠ACE=∠ABD
在△BEF与△CEA中

∴△BEF≌△CEA;
(3)BF=2CD

试题分析:(1)由CE⊥AB于E,∠ABC=45°,根据三角形的内角和为180°即可求得结果;
(2)先根据等角对等边可得EB=EC,再根据同角的余角相等可得∠ACE=∠ABD,再有CE⊥AB即得结论;
(3)由AB=CB,BD⊥AC于D,根据等腰三角形的三线合一的性质可得AC="2CD" ,再结合△BEF≌△CEA根据全等三角形的性质即可得到结果.
(1)∵在△ABC中,CE⊥AB于E
∴∠AEC=90°
又∵∠AEC=∠ABC+∠ECB,∠ABC=45°
∴∠ECB=∠AEC∠ABC= 90°45°= 45°;
(2)∵在△EBC中,∠ECB=∠ABC
∴EB=EC
∵在△ABC中,BD⊥AC于D,CE⊥AB于E
∴∠BEC=∠BDC= 90°
∴∠A+∠ACE=∠A+∠ABD=90°
∴∠ACE=∠ABD
在△BEF与△CEA中

∴△BEF≌△CEA;
(3)∵在△ABC中,AB=CB,BD⊥AC于D,
∴AC="2CD"
∵△BEF≌△CEA
∴BF="AC"
∴BF=2CD.
点评:解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(12分)如图⑴所示的图形,像我们常见的学习用品——圆规。我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:

⑴观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
⑵请你直接利用以上结论,解决以下三个问题:
①如图(2),把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX =__________°;
②如图(3),DC平分∠ADB, EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;
③如图(4),∠ABD,∠ACD的10等分线相交于点G1、G2、G9,,若∠BDC=1400,∠BG1C=77°,求∠A的度数。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

以线段、b、c 的长为边长能构成直角三角形的是
A.=3,b=4,c="6" B.=1,b=,c=
C.=5,b=6,c=8D.=,b=2,c=

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知OB=OC,∠A=∠D,求证:∠ABC=∠DCB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

满足下列哪种条件时,能判定△与△全等的是 (  )
A.
B.
C.
D.,△的周长= △的周长

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一个边长分别为6、8、10的直角三角形,请设计出一个有一条边长为8的直角三角形,使这两个直角三角形能够拼成一个等腰三角形.画出4种不同拼法(周长不等)的等腰三角形;请在四个备用图中分别画出,并在图中标明拼接的直角三角形的三边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列各组数能构成直角三角形的是(   )
A.1,2,3B.4,5,6C.6,8,10D.7,9,11

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若一直角三角形两边长分别为12和5,则第三边长为 (    )
A.13.B.13或C.13或15.D.15.

查看答案和解析>>

同步练习册答案