分析 (1)通过观察图形,根据等边三角形的性质就可以证明△BCE≌△ACD;
(2)由(1)△BCE≌△ACD可以得出∠ADC=∠BEC,而有∠AOB=∠EBC+∠ADB,就有∠AOB=∠EBC+∠BEC=∠DCE=60°,从而可以求出∠BOD的值.
解答 解:(1)△BCE≌△ACD.
理由:∵△ABC和△ECD都是等边三角形,
∴BC=AC,CE=CD,∠BCA=∠ECD=∠BAC=60°,
∴∠BCA+∠ACE=∠ECD+∠ACE,
∵∠BCE=∠ACD.
在△BCE和△ACD中,$\left\{\begin{array}{l}{BC=AC}\\{∠BCE=∠ACD}\\{CE=CD}\end{array}\right.$,
∴△BCE≌△ACD(SAS);
(2)∵△BCE≌△ACD,
∴∠ADC=∠BEC.
∵∠AOB=∠EBC+∠ADC,
∴∠AOB=∠EBC+∠BEC=∠DCE=60°.
∵∠AOB+∠BOD=180°,
∴∠BOD=120°.
点评 本题考查了等边三角形的性质的运用,三角形的外角与内角的关系的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是解答的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
类型 | 进价(元/盏) | 售价(元/盏) |
A型 | 40 | 60 |
B型 | 50 | 80 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 仍会迟到2分钟到校 | B. | 刚好按时到校 | ||
C. | 可以提前2分钟到校 | D. | 可以提前5分钟到校 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3.1742 | B. | 3.174 | C. | 3.175 | D. | 3.1743 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5.2cm | B. | 3.9cm | C. | 2.6cm | D. | 4.8cm |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com