精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.

(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长;
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.

【答案】
(1)

解:①∵△ABC绕点A顺时针方向旋转60°得到△ADE,

∴AB=AD,∠BAD=60°,

∴△ABD是等边三角形;

②由①得△ABD是等边三角形,

∴AB=BD,

∵△ABC绕点A顺时针方向旋转60°得到△ADE,

∴AC=AE,BC=DE,

又∵AC=BC,

∴EA=ED,

∴点B、E在AD的中垂线上,

∴BE是AD的中垂线,

∵点F在BE的延长线上,

∴BF⊥AD,AF=DF;

③由②知BF⊥AD,AF=DF,

∴AF=DF=3,

∵AE=AC=5,

∴EF=4,

∵在等边三角形ABD中,BF=ABsin∠BAF=6× =3

∴BE=BF﹣EF=3 ﹣4


(2)

解:如图所示,

∵∠DAG=∠ACB,∠DAE=∠BAC,

∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,

又∵∠DAG+∠DAE+∠BAE=180°,

∴∠BAE=∠ABC,

∵AC=BC=AE,

∴∠BAC=∠ABC,

∴∠BAE=∠BAC,

∴AB⊥CE,且CH=HE= CE,

∵AC=BC,

∴AH=BH= AB=3,

则CE=2CH=8,BE=5,

∴BE+CE=13.


【解析】(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.本题主要考查旋转的性质、等边三角形的判定与性质、中垂线的性质、三角形内角和定理等知识点,熟练掌握旋转的性质是解题的关键.
【考点精析】解答此题的关键在于理解三角形的内角和外角的相关知识,掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角,以及对旋转的性质的理解,了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=45°,AB=4cm,将△ABC绕点B按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示

国外品牌

国内品牌

进价(万元/部)

0.44

0.2

售价(万元/部)

0.5

0.25

该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量]

(1)该商场计划购进国外品牌、国内品牌两种手机各多少部?

(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:

(1)∠CEB=∠CBE;
(2)四边形BCED是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为5,∠CDF=30°,求 的长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是( )

A.2和1
B.1.25和1
C.1和1
D.1和1.25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC经过平移后得到△A1B1C1,点AA1,点BB1,点CC1分别是对应点,观察各对应点坐标之间的关系,解答下列问题:

(1)分别写出点AA1,点BB1,点CC1的坐标;

(2)若点P(x,y)通过上述的平移规律平移得到的对应点为Q(3,5),求p点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细阅读下面例题,解答问题

例题:已知二次三项式x24x+m有一个因式是(x+3),求另一个因式以及m的值.

解:设另一个因式为(x+n),得x24x+m=(x+3)(x+n),

x24x+mx2+n+3x+3n

解得:n=﹣7m=﹣21

∴另一个因式为(x7),m的值为﹣21

问题:

1)若二次三项式x25x+6可分解为(x2)(x+a),则a   

2)若二次三项式2x2+bx5可分解为(2x1)(x+5),则b   

3)仿照以上方法解答下面问题:若二次三项式2x2+3xk有一个因式是(2x5),求另一个因式以及k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著。书中有下列问题“今有勾八步,股十五步。问勾中容圆径几何?”其意思为今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是步。

查看答案和解析>>

同步练习册答案