精英家教网 > 初中数学 > 题目详情
如图所示.?ABCD中,DE⊥AB于E,BM=MC=DC.求证:∠EMC=3∠BEM.
证明:延长EM交DC的延长线于F,连接DM.
∵CM=BM,∠F=∠BEM,∠MCF=∠B,
∴△MCF≌△MBE(AAS),
∴M是EF的中点.由于ABCD及DE⊥AB,
∴DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,
由直角三角形斜边中线的性质知∠F=∠MDC,又由已知MC=CD,
∴∠MDC=∠CMD,
则∠MCF=∠MDC+∠CMD=2∠F.
从而∠EMC=∠F+∠MCF=3∠F=3∠BEM.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,正方形MNPQ网格中,每个小方格的边长都相等,正方形ABCD的顶点在正方形MNPQ的4条边的小方格顶点上.
(1)设正方形MNPQ网格内的每个小方格的边长为1,求:
①△ABQ,△BCM,△CDN,△ADP的面积;②正方形ABCD的面积;
(2)设MB=a,BQ=b,利用这个图形中的直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?相信你能给出简明的推理过程.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,平行四边形DEFG内接于△ABC,已知△ADE,△EFC,△DBG的面积为1,3,1,那么?DEFG的面积为(  )
A.2
3
B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平行四边形ABCD中,CE⊥AB且E为垂足.如果∠A=125°,则∠BCE=(  )
A.55°B.35°C.25°D.30°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

?ABCD中,AE平分∠BAD交BC于点E,将BC分成4cm和6cm两部分,则?ABCD的周长为(  )
A.28cmB.32cmC.28cm或32cmD.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若平行四边形ABCD的周长为48,DE=5,DF=10,则平行四边形ABCD的面积等于(  )
A.87.5B.80C.75D.72.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:
①△ABC≌△AED;
②△ABE是等边三角形;
③AD=AF;
④S△ABE=S△CDE
⑤S△ABE=S△CEF
其中正确的是(  )
A.①②③B.①②④C.①②⑤D.①③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平行四边形ABCD中,E、F是对角线BD上的点,且BE=DF.
(1)请你写出图中所有的全等三角形;
(2)试在上述各对全等三角形中找出一对加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.

查看答案和解析>>

同步练习册答案