精英家教网 > 初中数学 > 题目详情
11.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH•EA;
(3)若⊙O的半径为5,sinA=$\frac{3}{5}$,求BH的长.

分析 (1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切线;
(2)连接AC,由垂径定理得出$\widehat{BE}=\widehat{CE}$,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例$\frac{CE}{EH}=\frac{EA}{CE}$,即可得出结论;
(3)连接BE,由圆周角定理得出∠AEB=90°,由三角函数求出BE,再根据勾股定理求出EA,得出BE=CE=6,由(2)的结论求出EH,然后根据勾股定理求出BH即可.

解答 (1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,
∴∠ODB=∠ABC,
∵OF⊥BC,
∴∠BFD=90°,
∴∠ODB+∠DBF=90°,
∴∠ABC+∠DBF=90°,
即∠OBD=90°,
∴BD⊥OB,
∴BD是⊙O的切线;
(2)证明:连接AC,如图1所示:
∵OF⊥BC,
∴$\widehat{BE}=\widehat{CE}$,
∴∠CAE=∠ECB,
∵∠CEA=∠HEC,
∴△CEH∽△AEC,
∴$\frac{CE}{EH}=\frac{EA}{CE}$,
∴CE2=EH•EA;
(3)解:连接BE,如图2所示:
∵AB是⊙O的直径,
∴∠AEB=90°,
∵⊙O的半径为5,sin∠BAE=$\frac{3}{5}$,
∴AB=10,BE=AB•sin∠BAE=10×$\frac{3}{5}$=6,
∴EA=$\sqrt{A{B}^{2}-B{E}^{2}}$=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
∵$\widehat{BE}=\widehat{CE}$,
∴BE=CE=6,
∵CE2=EH•EA,
∴EH=$\frac{{6}^{2}}{8}$=$\frac{9}{2}$,
在Rt△BEH中,BH=$\sqrt{B{E}^{2}+E{H}^{2}}$=$\sqrt{{6}^{2}+(\frac{9}{2})^{2}}$=$\frac{15}{2}$.

点评 本题是圆的综合题目,考查了切线的判定、圆周角定理、圆心角、弧、弦之间的关系定理、勾股定理、三角函数、相似三角形的判定与性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要通过作辅助线证明三角形相似和运用三角函数、勾股定理才能得出结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.
(1)求证:∠BCP=∠BAN
(2)求证:$\frac{AM}{MN}$=$\frac{CB}{BP}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.综合与探究
如图1,在平面直角坐标系xOy中,抛物线W的函数表达式为y=-$\frac{4}{21}$x2+$\frac{16}{21}$x+4.抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点.
(1)求A、B两点的坐标及直线l的函数表达式.
(2)将抛物线W沿x轴向右平移得到抛物线W′,设抛物线W′的对称轴与直线l交于点F,当△ACF为直角三角形时,求点F的坐标,并直接写出此时抛物线W′的函数表达式.
(3)如图2,连接AC,CB,将△ACD沿x轴向右平移m个单位(0<m≤5),得到△A′C′D′.设A′C交直线l于点M,C′D′交CB于点N,连接CC′,MN.求四边形CMNC′的面积(用含m的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=(  )
A.120°B.130°C.140°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在四边形ABCD中,BC=AD,AB=CD
求证:四边形ABCD是平行四边形.
(1)填空,补全已知和求证;
(2)按嘉淇的想法写出证明;
(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求$\frac{DE}{BC}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.
(1)求证:∠PCA=∠ABC;
(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin∠P=$\frac{3}{5}$,CF=5,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.
(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;
(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列运算正确的是(  )
A.$\sqrt{4}$=±2B.x2•x3=x6C.$\sqrt{3}$+$\sqrt{2}$=$\sqrt{5}$D.(x23=x6

查看答案和解析>>

同步练习册答案