精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,下列结论中:

①abc<0;②9a﹣3b+c<0;③b2﹣4ac>0;④a>b,

正确的结论是_____(只填序号)

【答案】②③④

【解析】

运用二次函数的图形与性质进行判断即可.

解析:①因为抛物线开口向下,所以a<0.因为抛物线的对称轴为直线x=-10, b0,因为抛物线与y轴的交点在y轴正半轴上,所以c>0.所以abc>0.故①错误;

②因为由图像得当x=3,y0,所以9a-3b+c<0.故②正确;

③因为图像与z轴有两个交点,所以b24ac0.故③正确;

④因为抛物线的对称轴为直线x=-1,,b=2a

所以a-b=a-2a=-a0,所以a>b.故④正确.

故正确的有②③④

故答案:②③④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某超市第一次用元购进甲、乙两种商品,其中甲商品件数的倍比乙商品件数的倍多件,甲、乙两种商品的进价和售价如下表(利润=售价-进价)

进价(元/件)

20

28

售价(元/件)

26

40

1)该超市第一次购进甲、乙两种商品的件数分别是多少?

2)该超市将第一次购进的甲、 乙两种商品全部卖出后一共可获得多少利润?

3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多元,则第二次乙商品是按原价打几折销售的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.

(1)求证:AGE≌△BGF;

(2)试判断四边形AFBE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展开后,得折痕ADBE(如图①),点O为其交点.如图②,若PN分别为BEBC上的动点.如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为(  )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,∠B=∠C=90°,AB=3,BC=4,CD=1.以AD为腰作等腰ADE,使ADE=90°,过点E作EFDC交直线CD于点F.请画出图形,并直接写出AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰ABC中,B=90°,AM是ABC的角平分线,过点M作MNAC于点N,EMF=135°.将EMF绕点M旋转,使EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:

(1)当EMF绕点M旋转到如图的位置时,求证:BE+CF=BM;

(2)当EMF绕点M旋转到如图,图的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=   ,CF=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的的个数有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠ABC、∠ADC的平分线分别交ADBC于点EF,求证:四边形BEDF是平行四边形.

查看答案和解析>>

同步练习册答案