精英家教网 > 初中数学 > 题目详情
10.在等腰△ABC中,
(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线      段为线段AE,连接DE,则∠BDE的度数为30°;
(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将   线段AD绕点D逆时针旋转60°得到线段DE,连接BE.
①根据题意在图2中补全图形;
②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:
思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;
思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;
思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;

请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)
(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的数量关系,这个数量关系是k(BE+BD)=AC.(直接给出结论无须证明)

分析 (1)根据等边三角形的性质得到∠BAD=∠CAD=$\frac{1}{2}$∠BAC=30°,由线段AD关于直线AB的对称线段为线段AE,得到AB⊥DE,于是得到结论;
(2)思路1:如图2(a),连接AE,思路2:过点D作DF∥AB,交AC于F,思路3:如图2(c),延长CB至G,使BG=CD,根据全等三角形的判定和性质即可得到结论;
(3)如图3,连接AE,根据已知条件得到△ADE∽△ACB,根据相似三角形的性质得到∠AED=∠ABC,∠EAD=∠BAC,于是得到∠EAB=∠DAC,根据全等三角形的性质得到CD=BE;根据线段的和差即可得到结论.

解答 解:(1)∵△ABC是等边三角形,D为线段BC中点,
∴∠BAD=∠CAD=$\frac{1}{2}$∠BAC=30°,
∵线段AD关于直线AB的对称线段为线段AE,
∴AB⊥DE,
∴∠BDE=30°;
故答案为:30°;
(2)思路1:如图2(a),连接AE,
∵AD=DE,∠ADE=60°,
∴△ADE是等边三角形,
∵△ABC是等边三角形,
∴AE=AD,AB=AC,∠EAD=∠BAD=60°,
∴∠EAB=∠CAD,
在△AEB△与ADC中,$\left\{\begin{array}{l}{AE=AD}\\{∠EAB=∠DAC}\\{AB=AC}\end{array}\right.$,
∴△AEB≌△ADC,
∴CD=BE;
思路2:过点D作DF∥AB,交AC于F,
∵△ABC是等边三角形,
∴AC=BC,∠BAC=60°,
∵DF∥AB,
∴∠DFC=60°,
∴△CDF是等边三角形,
∴∠ADE=∠ACB=∠ABC=60°,
∴∠DAF=∠EDB,
在△ADF与△DEB中,$\left\{\begin{array}{l}{AD=DE}\\{∠DAF=∠BDE}\\{AF=BD}\end{array}\right.$,
∴△ADF≌△DEB,
∴DF=BE=CD;
思路3:如图2(c),延长CB至G,使BG=CD,∵△ABC是等边三角形,
∴AC=BC,∠BAC=60°,
∵CD=BG,
∴DG=AC,∴∠ADE=∠ACB=∠ABC=60°,
∴∠DAF=∠EDB,
在△ADC与△DEG中,$\left\{\begin{array}{l}{DG=AC}\\{∠DAF=∠EDB}\\{AD=DE}\end{array}\right.$,
∴△ADC≌△DEG,
∴CD=EG=BG=60°,
∴BE=BG=CD;

(3)k(BE+BD)=AC,
如图3,连接AE,
∵AC=kBC,AD=kDE,且∠ADE=∠C,
∴△ADE∽△ACB,
∴∠AED=∠ABC,∠EAD=∠BAC,
∴∠EAB=∠DAC,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠AED=∠ADE,
∴AE=AD,
在△AEB△与ADC中,$\left\{\begin{array}{l}{AE=AD}\\{∠EAB=∠DAC}\\{AB=AC}\end{array}\right.$,
∴△AEB≌△ADC,
∴CD=BE;
∵BC=BD+CD,
∴BC=BD+BE,
∵AC=kBC,
∴AC=k(BD+BE),
故答案为:k(BE+BD)=AC.

点评 本题考查了全等三角形的判定和性质,相似三角形的判定和性质,等边三角形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.定义:在△ABC中,∠C=30°,我们把∠A的对边与∠C 的对边的比叫做∠A的邻弦,记作thi A,即thi A=$\frac{∠A的对边}{∠C的对边}$=$\frac{BC}{AB}$.请解答下列问题:
已知:在△ABC中,∠C=30°.
(1)若∠A=45°,求thi A的值;
(2)若thi A=$\sqrt{3}$,则∠A=60或120°;
(3)若∠A是锐角,探究thi A与sinA的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知,如图AD∥BE,∠1=∠2,试判断∠A和∠E的关系,请说明每一步的推理依据.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某公司为了扩大经营,决定购进6台机器用于生产某种活塞,现有甲、乙两种机器选择,其中每种机器的价格和每台机器生产活塞的数量如表:
价格(万元/1台)75
每台日产量(个)10060
公司要求:甲种机器购买的台数不能少于乙种机器台数的一半,且本次购买机器所耗资金不能超过40万元.
(1)设甲种机器购买x台,本次购买机器所耗资为y万元,试求出y与x之间的函数关系式,并帮助公司确定有几种购买方案?
(2)若该公司购进的6台机器的日生产能力不能低于500个,那么为了节约资金应选择哪种购买方案?
(3)若每天各方面的费用为22000元,甲种机器生产的活塞每个获利60元,乙种机器生产的活塞每个获利50元.在(2)的条件下,请直接写出生产多少天可回收投资且盈利100万元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于$\frac{1}{2}$AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在四边形ABCD中,∠ABC=90°,DE⊥AC于点E,且AE=CE,DE=5,EB=12.
(1)求AD的长;
(2)若∠CAB=30°,求四边形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解不等式3(x-1)≤$\frac{x+4}{2}$,并把它的解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源:2017届湖北省枝江市九年级3月调研考试数学试卷(解析版) 题型:单选题

不等式组的解集在数轴上表示正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若$\frac{a}{b}$=$\frac{c}{d}$=3(2b-3d≠0),则$\frac{2a-3c}{2b-3d}$=3.

查看答案和解析>>

同步练习册答案