【题目】超市准备购进A、B两种品牌的饮料共100件,两种饮料每件利润分别是15元和13元.设购进A种饮料x件,且所购进的两种饮料能全部卖出,获得的总利润为y元.
(1)求y与x的函数关系式;
(2)根据两种饮料历次销量记载:A种饮料至少购进30件,B种饮料购进数量不少于A种饮料件数的2倍.问:A、B两种饮料进货方案有几种?哪一种方案能使超市所获利润最高?最高利润是多少?
【答案】(1)y=2x+1300;
(2)购进A种饮料33件,B种饮料67件,超市所获利润最高,最高利润是1366元
【解析】
(1)设购进A种饮料x件,则购进B种饮料(100﹣x)件,根据利润等于每件的利润×件数就可以得出结论;
(2)根据题意可以表示出:A种饮料至少购进30件,为x≥30,B种饮料购进数量不少于A种饮料件数的2倍为100﹣2x≥2x,由这两个不等式构成不等式组求出其解,根据依次函数的性质得出答案即可.
(1)y与x函数关系式是:
y=15x+13(100﹣x)
=2x+1300,
即y=2x+1300.
(2)由题意,得,
解得30≤x≤33,
它的整数解为x=30,31,32,33.
∴A、B两种饮料进货方案有4种,
∵y随着x的增大而增大,
∴当x=33时,y取得最大值y=2×33+1300=1366
即分别购进A种饮料33件,B种饮料67件,超市所获利润最高,最高利润是1366元.
科目:初中数学 来源: 题型:
【题目】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.
求证:△BEC≌△CDA;
(模型应用)
(2)①已知直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;
②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,-6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=-2x+6上的动点且在第四象限.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李师傅负责修理我校课桌椅,现知道李师傅修理2张课桌和3把椅子共需86分钟,修理5张课桌和2把椅子共需149分钟.
(1)请问李师傅修理1张课桌和1把椅子各需多少分钟
(2)现我校有12张课桌和14把椅子需要修理,要求1天做完,李师傅每天工作8小时,请问李师傅能在上班时间内修完吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上有A、B、C、D四个整数点即各点均表示整数,且,若A、D两点表示的数的分别为和6,点E为BD的中点,那么该数轴上上述五个点所表示的整数中,离线段BD的中点最近的整数是
A. B. 0C. 1D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个由若干小正方形堆成的几何体,它从正面看和从左面看的图形如图1所示.
这个几何体可以是图2中甲,乙,丙中的______;
这个几何体最多由______个小正方体堆成,最少由______个小正方体堆成;
请在图3中用阴影部分画出符合最少情况时的一个从上面往下看得到的图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.
(1)甲、乙两个工程队单独完成此项工程各需多少天?
(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于E交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若AE=6,FB=4,求⊙O的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.AB是⊙O的直径,E为弦AP上一点,过点E作EC⊥AB于点C,延长CE至点F,连接FP,使∠FPE=∠FEP,CF交⊙O于点D.
(1)证明:FP是⊙O的切线;
(2)若四边形OBPD是菱形,证明:FD=ED.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为△ABC内一点,OD⊥AB于点D,OE⊥AC于点E,OF⊥BC于点F,若OD=OE=OF,连接OA,OB,OC,下列结论不一定正确的是( )
A. △BOD≌△BOF B. ∠OAD=∠OBF
C. ∠COE=∠COF D. AD=AE
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com