精英家教网 > 初中数学 > 题目详情
(2005•武汉)如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.

【答案】分析:(1)根据抛物线在坐标系中的特殊位置,可以设抛物线的一般式,顶点式,求抛物线的解析式.
(2)抛物线的实际应用问题中,可以取自变量的值,求函数值.
解答:解:(1)设抛物线的解析式为y=ax2+bx+c,由对称轴是y轴得b=0,
由EO=6,得c=6,
又∵抛物线经过点D(4,2),
所以:16a+4b+6=2,
解得a=
所求抛物线的解析式为:y=x2+6.

(2)取x=±2.4,代入(1)所求得的解析式中,
求得y=4.56>4.2
故这辆货运卡车能通过隧道.
点评:求抛物线解析式有几种方法,因题而异,灵活处理.会找抛物线上几个关键点的坐标,确定抛物线解析式.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《图形的平移》(01)(解析版) 题型:解答题

(2005•武汉)如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角.以点O2(13,5)为圆心的圆与x轴相切于点D.

(1)求直线l的解析式;
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当⊙O2第一次与⊙O1相切时,直线l也恰好与⊙O2第一次相切,求直线l平移的速度;
(3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙O2的切线,切⊙O2于另一点F,连接AO2、FG,那么FG•AO2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2005•武汉)如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.

查看答案和解析>>

科目:初中数学 来源:2009年文星镇中考模拟试卷(解析版) 题型:解答题

(2005•武汉)如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角.以点O2(13,5)为圆心的圆与x轴相切于点D.

(1)求直线l的解析式;
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当⊙O2第一次与⊙O1相切时,直线l也恰好与⊙O2第一次相切,求直线l平移的速度;
(3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙O2的切线,切⊙O2于另一点F,连接AO2、FG,那么FG•AO2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围.

查看答案和解析>>

科目:初中数学 来源:2005年湖北省武汉市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•武汉)如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角.以点O2(13,5)为圆心的圆与x轴相切于点D.

(1)求直线l的解析式;
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当⊙O2第一次与⊙O1相切时,直线l也恰好与⊙O2第一次相切,求直线l平移的速度;
(3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙O2的切线,切⊙O2于另一点F,连接AO2、FG,那么FG•AO2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围.

查看答案和解析>>

同步练习册答案