精英家教网 > 初中数学 > 题目详情

如图,在中,点,点轴正半轴上,且

(1)求点的坐标; (3分)

(2)将绕原点顺时针旋转,点落在轴正半轴的点处,抛物线经过点两点,求此抛物线的解析式及对称轴.(7分)

 

【答案】

(1)(2)

【解析】解:(1)∵

                                                               (1分)

                                                               (1分)

    ∴.                                                              (1分)

解:(2)由题意,得,                                                     (1分)

,解得,                                      (3分)

.                                                     (1分)

对称轴为直线

(1)先根据点A的坐标求出OA的长度,然后求出OB的长度,从而得解;

(2)根据旋转的旋转求出点B′的坐标,然后利用待定系数法求函数解析式即可,根据对称轴表达式列式即可得解

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,
92
).

(1)求抛物线的函数关系式;
(2)如图①,设该抛物线的对称轴与x轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标;
(3)如图②,连结AC、BC,若点E是线段AB上的一个动点(与点A、B不重合),过点E作EF∥AC交线段BC于点F,连结CE,记△CEF的面积为S,求出S的最大值及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分12分,任选一题作答.)
Ⅰ、如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当0<t<
52
时,证明DC⊥OA;
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、E、D为顶点的四边形是梯形,求点E的坐标.
Ⅱ、(1)如图Ⅱ-1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图Ⅱ-2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
(3)如图Ⅱ-3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.

查看答案和解析>>

科目:初中数学 来源:2010年河北省初中毕业生升学文化课考试数学试题 题型:059

如图,在直角梯形ABCD中,ADBC,∠B=90°,AD=6,BC=8,AB=3,点MBC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点PQ的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点PQ同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点PQ运动的时间是t秒(t>0).

(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出yt之间的函数关系式(不必写t的取值范围).

(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积.

(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012届上海市徐汇初三二模数学试卷(带解析) 题型:解答题

如图,在中,点,点轴正半轴上,且

(1)求点的坐标; (3分)
(2)将绕原点顺时针旋转,点落在轴正半轴的点处,抛物线经过点两点,求此抛物线的解析式及对称轴.(7分)

查看答案和解析>>

同步练习册答案