精英家教网 > 初中数学 > 题目详情
小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.
【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC-AA1=-0.4=2
而A1B1=2.5,在Rt△A1B1C中,由+=得方程______,
解方程得x1=______,x2=______,
∴点B将向外移动______米.
(2)解完“思考题”后,小聪提出了如下两个问题:
【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题.

【答案】分析:(1)直接把B1C、A1C、A1B1的值代入进行解答即可;
(2)把(1)中的0.4换成0.9可知原方程不成立;设梯子顶端从A处下滑x米,点B向外也移动x米代入(1)中方程,求出x的值符合题意.
解答:解:(1)(x+0.7)2+22=2.52
故答案为;0.8,-2.2(舍去),0.8.

(2)①不会是0.9米,
若AA1=BB1=0.9米,则A1C=2.4米-0.9米=1.5米,B1C=0.7米+0.9米=1.6米,
1.52+1.62=4.81,2.52=6.25
+
∴该题的答案不会是0.9米.
②有可能.
设梯子顶端从A处下滑x米,点B向外也移动x米,
则有(x+0.7)2+(2.4-x)2=2.52
解得:x1=1.7或x2=0(舍)
∴当梯子顶端从A处下滑1.7米时,点B向外也移动1.7米,即梯子顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等.
点评:本题考查的是解直角三角形的应用及一元二次方程的应用,根据题意得出关于x的一元二次方程是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•绍兴)小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.
【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC-AA1=
2.52-0.72
-0.4=2
而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1
B
2
1
得方程
(x+0.7)2+22=2.52
(x+0.7)2+22=2.52

解方程得x1=
0.8
0.8
,x2=
-2.2(舍去)
-2.2(舍去)

∴点B将向外移动
0.8
0.8
米.
(2)解完“思考题”后,小聪提出了如下两个问题:
【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(浙江绍兴卷)数学(带解析) 题型:解答题

小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索。
【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?

(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC﹣AA1=
而A1B1=2.5,在Rt△A1B1C中,由得方程                                   
解方程得x1=         ,x2=                   
∴点B将向外移动         米。
(2)解完“思考题”后,小聪提出了如下两个问题:
【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题。

查看答案和解析>>

科目:初中数学 来源:2013-2014学年浙江杭州萧山回澜初中九年级12月阶段性测试数学试卷(解析版) 题型:解答题

小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索.

【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长.

小明和小聪经过交流,得到了如下的两种解决方法:

方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=

方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=

感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式.

(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,),C为直线AB上一点,过A、O、C的⊙E的半径为2.求线段OC的长.

(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.①y关于x的函数关系式;②求线段EF长度的最小值.

 

 

查看答案和解析>>

科目:初中数学 来源:浙江省中考真题 题型:解答题

小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索。【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整:解:设点B将向外移动x米,即BB1=x,则B1C=x+0.7,A1C=AC﹣AA1=而A1B1=2.5,在Rt△A1B1C中,由得方程                                    ,解方程得x1=               ,x2=                 
∴点B将向外移动             米。
(2)解完“思考题”后,小聪提出了如下两个问题:
【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题。 

查看答案和解析>>

科目:初中数学 来源: 题型:

小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索。

【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?

(1)请你将小明对“思考题”的解答补充完整:

解:设点B将向外移动x米,即BB1=x,

则B1C=x+0.7,A1C=AC﹣AA1=

而A1B1=2.5,在Rt△A1B1C中,由得方程                                    

解方程得x1=          ,x2=                   

∴点B将向外移动          米。

(2)解完“思考题”后,小聪提出了如下两个问题:

【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?

【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?

请你解答小聪提出的这两个问题。

 

查看答案和解析>>

同步练习册答案