精英家教网 > 初中数学 > 题目详情
27、如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)证明:△BDF是等腰直角三角形.
(2)猜想线段AD与CF之间的关系并证明.
分析:(1)由等腰直角三角形可得∠ABC=45°,由DE⊥AB,可得∠BDF=45°,由BF∥AC可得∠CBF=90°(同旁内角互补),进而可得出结论.
(2)由SAS判定△ACD≌△CBF即可.
解答:证明:(1)∵△ABC是等腰直角三角形,∴∠ABC=45°,
∵DE⊥AB,∠ABC=45°,∴∠BDF=45°,
∵BF∥AC,∴∠FBD+∠ACB=180°,
∴∠FBD=90°,∴∠BFD=45°,即BD=BF,
∴△BDF是等腰直角三角形.

(2)AD=CF且AD⊥CF,
证明:∵AC=BC,BF=BD=CD,∠ACB=∠CBF=90°,
∴△ACD≌△CBF,
∴AD=CF.
∴∠CAD=∠ECF,
又∠CAD+∠CDA=90°,
∴∠ECF+∠CDG=90°,
∴∠CGD=90°,
∴AD⊥CF.
点评:本题主要考查了等腰三角形的判定以及全等三角形的判定及性质,能够熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是(  )
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边精英家教网上运动,且保持AD=CE.连接DE、DF、EF.
①求证:△DFE是等腰直角三角形;
②在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由.
③求△CDE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,则
ADDC
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠ACB=90°,CA=CB,点M、N是AB上任意两点,且∠MCN=45°,点T为AB的中点.以下结论:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正确结论的序号是(  )
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.
(1)在此运动变化的过程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面积.

查看答案和解析>>

同步练习册答案