精英家教网 > 初中数学 > 题目详情

【题目】解下列方程:

(1)=3.

(2)(y+2)2=(3y﹣1)2

(3)(x﹣2)(x+5)=8.

(4)(2x+1)2=﹣6x﹣3.

(5)2x2﹣3x﹣2=0.

(6)4x2﹣12x﹣1=0(配方法).

【答案】(1) x1=0,x2=﹣6;(2) y1=﹣,y2=;(3) x1=3,x2=﹣6;(4) x1=﹣,x2=﹣2;(5)x1=﹣,x2=2;(6) x1=,x2=

【解析】

(1)变形后开方,即可得出两个一元一次方程,求出方程的解即可;
(2)移项后分解因式,开方,即可得出两个一元一次方程,求出方程的解即可;
(3)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;
(4)移向后分解因式,即可得出两个一元一次方程,求出方程的解即可;
(5)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
(6)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解即可.

(1)=3,

(x+3)2=9,

x+3=±3,

x1=0,x2=﹣6;

(2)(y+2)2=(3y﹣1)2

(y+2)2﹣(3y﹣1)2,=0,

[(y+2)+(3y﹣1)][(y+2)﹣(3y﹣1)]=0,

(y+2)+(3y﹣1)=0,(y+2)﹣(3y﹣1)=0,

y1=﹣,y2=

(3)(x﹣2)(x+5)=8.

整理得:x2+3x﹣18=0,

(x﹣3)(x+6)=0,

x﹣3=0,x+6=0,

x1=3,x2=﹣6;

(4)(2x+1)2=﹣6x﹣3,

(2x+1)2+3(2x+1)=0,

(2x+1)(2x+1+3)=0,

2x+1=0,2x+1+3=0,

x1=﹣,x2=﹣2;

(5)2x2﹣3x﹣2=0,

(2x+1)(x﹣2)=0,

2x+1=0,x﹣2=0,

x1=﹣,x2=2;

(6)4x2﹣12x﹣1=0

4x2﹣12x=1,

x2﹣3x+(2=+(2

(x﹣2=

x﹣

x1=,x2=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一架云梯AB的长25 m,斜靠在一面墙上,梯子靠墙的一端A距地面距离AC24 m.

(1)这个梯子底端B离墙的距离BC有多少米?

(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也滑动了4 m吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥CD.BO=6cm,CO=8cm.
(1)求证:BO⊥CO;
(2)求BE和CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=CD,AB∥CD,点E、F在线段BD上,且BE=DF,连接AE、CF.

(1)指出线段AE与CF的关系,并说明理由;

(2)若将题中的条件“点E、F在线段BD上”改为“点E、F在直线BD上” ,那么(1)中的结论还一定能成立吗?若能,直接写出结论;若不能,请举出反例加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情境】

课外兴趣小组活动时,老师提出了如下问题:

如图①ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DEAD,连接BE.请根据小明的方法思考:

(1)由已知和作图能得到ADC≌△EDB,依据是

A.SSS B.SAS C.AAS D.HL

(2)由三角形的三边关系可求得AD的取值范围是

解后反思:题目中出现中点”、“中线等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.

【初步运用】

如图②ADABC的中线,BEACE,交ADF,且AEEF.若EF=3,EC=2,求线段BF的长.

【灵活运用】

如图③,在ABC中, A=90°,DBC中点, DEDFDEAB于点EDFAC于点F,连接EF.试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由点P(14,1),A(a,0),B(0,a)确定的△PAB的面积为18.

(1)如图,若0<a<14,求a的值.

(2)如果a>14,请画图并求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ABE=ACD=RtAE=ADABC=ACB.求证:∠BAE=CAD

请补全证明过程,并在括号里写上理由.

证明:在ABC中,

∵∠ABC=ACB

AB= ( )

RtABERtACD中,

=AC =AD

RtABERtACD( )

∴∠BAE=CAD( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列的四个几何体中,同一几何体的主视图与俯视图相同的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=2 ,∠C=120°,以点C为圆心的 与AB,AD分别相切于点G,H,与BC,CD分别相交于点E,F.若用扇形CEF作一个圆锥的侧面,则这个圆锥的高是

查看答案和解析>>

同步练习册答案