精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.

(1)如图,若抛物线经过A、B两点,求抛物线的解析式.

(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.

(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


下列各式计算正确的是(  )

 

A.

+=

B.

4﹣3=1

C.

2×3=6

D.

÷=3

查看答案和解析>>

科目:初中数学 来源: 题型:


某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:

时间(第x天)

1

3

6

10

日销售量(m件)

198

194

188

180

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)

1≤x<50

50≤x≤90

销售价格(元/件)

x+60

100

(1)求m关于x的一次函数表达式;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是      米.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系内,O为原点,点A的坐标为(﹣3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.

(1)求B点的坐标;

(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


 在一个不透明的袋子中,装有红球、黄球、蓝球、白球各1个,这些球除颜

色外无其他差别,从袋中随机取出一个球,取出红球的概率为( C )

A.                B.            C.              D.1

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为(  )

第12题

A.9              B.18              C.36            D.72

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏江阴第一中学九年级3月月考数学试卷(解析版) 题型:解答题

(本题满分9分)操作:小英准备制作一个表面积为6cm2的正方体纸盒,现选用一些废弃的纸片进行如下设计:

说明:

方案一:图形中的圆过点A.B.C;

方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点.

纸片利用率=×100%

发现:(1)小英发现方案一中的点A.B恰好为该圆一直径的两个端点.你认为小英的这个发现是否正确,请说明理由.

(2)小英通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.(结果精确到0.1%)

探究:(3)小英感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.(结果精确到0.1%)

说明:方案三中的每条边均过其中两个正方形的顶点.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏海安县城东镇韩洋初中九年级上学期学业分析数学试卷(解析版) 题型:填空题

一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率都为x.已知在第三年年末,这辆车折旧后价值11.56 万元,可列方程为

查看答案和解析>>

同步练习册答案