精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB6cmAC8cmBC10cmP为边BC上一动点,PEABEPFACF,连接EF,则EF的最小值为_______cm

【答案】4.8

【解析】

连接AP,先利用勾股定理的逆定理证明△ABC为直角三角形,∠BAC=90°,再证明四边形AEPF为矩形,则AP=EF,当AP的值最小时,EF的值最小,利用垂线段最短得到AP⊥BC时,AP的值最小,然后利用面积法计算此时AP的长即可.

解:

连接AP
∵AB=6cmAC=8cmBC=10cm
∴AB2+AC2=BC2
∴△ABC是直角三角形,
∴∠BAC=90°
∵PE⊥ABPF⊥AC
四边形AEPF是矩形,
∴AP=EF
AP⊥BC时,EF的值最小,
SABCAB×ACBC×AP

则:×6×8×10×AP
解得AP=4.8cm
EF的最小值是4.8cm

答案为4.8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.

(1)“从中任意抽取1个球不是红球就是白球   事件,从中任意抽取1个球是黑球   事件;

(2)从中任意抽取1个球恰好是红球的概率是   

(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于AB两点,与y轴交于点C,已知A–10),且直线BC的解析式为y=x-2,作垂直于x轴的直线,与抛物线交于点F,与线段BC交于点E(不与点B和点C重合).

1)求抛物线的解析式;

2)若CEF是以CE为腰的等腰三角形,求m的值;

3)点Py轴左侧抛物线上的一点,过点P交直线BC于点M,连接PB,若以PMB为顶点的三角形与△ABC相似,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x轴交于点y轴交于点C,抛物线经过点BC,与x轴的另一个交点为A

1)求抛物线的解析式;

2)点P是直线下方抛物线上一动点,求四边形面积最大时点P的坐标;

3)若M是抛物线上一点,且,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应垃圾分类处理,改善生态环境的号召,某小区将生活垃圾分成四类:厨余垃圾、可回收垃圾、不可回收垃圾、有害垃圾,分别记为abc并且设置了相应的垃圾箱:“厨余垃圾”箱,“可回收垃圾”箱,“不可回收垃圾”箱,“有害垃圾”箱,分别记为ABCD

如果将一袋有害垃圾任意投放进垃圾箱,则投放正确的概率是________

小明将家里的厨余垃圾、可回收垃圾分装在两个袋中,任意投放在其中两个垃圾箱中,用画树状图或列表的方法求这两袋垃圾都投放正确的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】积极响应政府提出的“绿色发展·碳出行”号召,某社区决定购置一批共享单车,经市场调查知,购买3量男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.

(1)求男式单车和女式单车的单价;

(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,l是经过A20),B0b)两点的直线,且b0,点C的坐标为(20),当点B移动时,过点CCDl交于点D

1)求点DO之间的距离;

2)当tanCDO=时,求直线l的解析式;

3)在(2)的条件下,直接写出△ACD与△AOB重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设抛物线yax2+bx+cx轴交于两个不同的点A(﹣10),Bm0),与y轴交于点C0,﹣2),且∠ACB90度.

1)求m的值和抛物线的解析式;

2)已知点D1n)在抛物线上,过点A的直线yx+1交抛物线于另一点E,求点D和点E的坐标;

3)在x轴上是否存在点P,使以点PBD为顶点的三角形与三角形AEB相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从DE两处测得路灯A的仰角分别为α45°,且tanα6.求灯杆AB的长度.

查看答案和解析>>

同步练习册答案