精英家教网 > 初中数学 > 题目详情
如图,一个氢气球升在广场上空,已知氢气球的直径为4m,在地面上点A测得气球中心的仰角∠OAD=60°,测得气球的视角(两条视线AB,AC的夹角)∠BAC=60°,AC与圆相切于C,且OC⊥AC,则气球中心O离地面的高度OD为多少米?(
3
≈1.73)
精英家教网

精英家教网
连接OB,则OB⊥AB,
∴∠OBA=∠OCA=90°.
∵OB=OC,OA=OA,△OAB≌△OAC,∠OAB=∠OAC=30°,
直角三角形OAC中,OA=OC÷sin∠OAC=2OC=4m,
直角三角形OAD中,OD=OA?sin60°=2
3
≈3.46m.
因此OD的长时3.46m.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一个氢气球升在广场上空,已知氢气球的直径为4m,在地面上点A测得气球中心的仰角∠OAD=60°,测得气球的视角(两条视线AB,AC的夹角)∠BAC=60°,AC与圆相切于C,且OC⊥AC,则气球中心O离地面的高度OD为多少米?(
3
≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一个氢气球升在广场上空,已知氢气球的直径为4m,在地面上点A测得气球中心的仰角∠OAD=60°,测得气球的视角(两条视线AB,AC的夹角)∠BAC=60°,AC与圆相切于C,且OC⊥AC,则气球中心O离地面的高度OD为多少米?(数学公式≈1.73)

查看答案和解析>>

科目:初中数学 来源:专项题 题型:填空题

如图,一个氢气球升在广场上空,已知氢气球的直径为4m,在地面上点A测得气球中心的仰角∠OAD=60 °,测得气球的视角(两条视线AB,AC的夹角)∠BAC=60 °,AC与圆相切于C,且OC⊥AC,则气球中心O离地面的高度OD约为(    )米。(≈1.73)

查看答案和解析>>

同步练习册答案