精英家教网 > 初中数学 > 题目详情
如图在梯形ABCD中,AD∥BC,AD⊥CD,BC=CD=2AD,E是CD上一点,∠ABE=45°,则tan∠AEB的值等于( )

A.3
B.2
C.
D.
【答案】分析:过B作DC的平行线交DA的延长线于M,在DM的延长线上取MN=CE.
根据全等三角形及直角三角形的性质求出∠BNM两直角边的比,即可解答.
解答:解:过B作DC的平行线交DA的延长线于M,在DM的延长线上取MN=CE.
则四边形MDCB为正方形,易得△MNB≌△CEB,
∴BE=BN.∴∠NBE=90°.
∵∠ABE=45°,∴∠ABE=∠ABN,
∴△NAB≌△EAB.
设EC=MN=x,AD=a,则AM=a,DE=2a-x,AE=AN=a+x,
∵AD2+DE2=AE2
∴a2+(2a-x)2=(a+x)2
∴x=a.
∴tan∠AEB=tan∠BNM==3.
故选A.
点评:本题考查的是锐角三角函数的定义,解答此题的关键是作出辅助线,构造出直角三角形,利用数形结合解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图在梯形ABCD中,AB=DC=10cm,AC与BD相交于G,且∠AGD=60°,设E为CG的中点,F为AB的中点,则EF的长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出精英家教网发以3厘米/秒的速度沿B?C?D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.
(1)求边BC的长;
(2)当t为何值时,PC与BQ相互平分;
(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在梯形ABCD中,AD∥BC,E是梯形内一点,ED⊥AD,∠EBC=∠EDC,∠ECB=45°.
(1)求证:BE=CD;
(2)若梯形ABCD为等腰梯形且DE=3,tan∠DCB=4,试求四边形ABED的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•宣城模拟)我们知道连接三角形两边中点的线段叫做三角形的中位线;通过证明可以得到“三角形的中位线平行于三角形的第三边,且等于第三边的一半”类似三角形中位线,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图在梯形ABCD中,AD∥BC,点E,F分别是AB、CD的中点,观察EF的位置,联想三角形中位线的性质,你能发现梯形的中位线有什么性质?证明你的结论.
(2)如果点E分线段AB为
AE
EB
=
1
3
,EF∥BC交CD于F,AD=3,BC=5,请你利用第(1)的结论求出EF=
3.5
3.5
(直接填写结果);
(3)如果点E分线段AB为
AE
EB
=
m
n
,EF∥BC交CD 于F,AD=a,BC=b,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在梯形ABCD中,AD∥BC,∠B=∠C,DE交BC于点E,AD=BE.
(1)AB=DE吗?为什么?
(2)梯形ABCD是等腰梯形吗?为什么?

查看答案和解析>>

同步练习册答案