精英家教网 > 初中数学 > 题目详情

【题目】等腰△ABC中,AB=AC=5,△ABC的面积为10,则BC=

【答案】2 或4
【解析】解:作CD⊥AB于D,
则∠ADC=∠BDC=90°,△ABC的面积= ABCD= ×5×CD=10,
解得:CD=4,
∴AD= = =3;
分两种情况:

①等腰△ABC为锐角三角形时,如图1所示:
BD=AB﹣AD=2,
∴BC= = =2
②等腰△ABC为钝角三角形时,如图2所示:
BD=AB+AD=8,
∴BD= = =4
综上所述:BC的长为2 或4
故答案为:2 或4
作CD⊥AB于D,则∠ADC=∠BDC=90°,由三角形的面积求出CD,由勾股定理求出AD;分两种情况:①等腰△ABC为锐角三角形时,求出BD,由勾股定理求出BC即可;②等腰△ABC为钝角三角形时,求出BD,由勾股定理求出BC即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.

(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E,F分别是等边△ABC中AC,AB边上的中点,以AE为边向外作等边△ADE.

(1)求证:四边形AFED是菱形;
(2)连接DC,若BC=10,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.

(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程 ,且关于x的不等式组 只有4个整数解,那么b的取值范围是(
A.﹣1<b≤3
B.2<b≤3
C.8≤b<9
D.3≤b<4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进甲、乙两种服装,每件甲种服装比每件乙种服装贵25元,该商场用2000元购进甲种服装,用750元购进乙种服装,所购进的甲种服装的件数是所购进的乙种服装的件数的2倍.
(1)分别求每件甲种服装和每件乙种服装的进价;
(2)若每件甲种服装售价130元,将购进的两种服装全部售出后,使得所获利润不少于750元,问每件乙种服装售价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5.
月信息消费额分组统计表

组别

消费额(元)

A

10≤x<100

B

100≤x<200

C

20≤x<300

D

300≤x<400

E

x≥400

请结合图表中相关数据解答下列问题:

(1)这次接受调查的有户;
(2)在扇形统计图中,“E”所对应的圆心角的度数是
(3)请你补全频数直方图;
(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.如图2.
(1)求证:EG=CH;
(2)已知AF= ,求AD和AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.

分组

次数x(个)

人数

A

0≤x<120

24

B

120≤x<130

72

C

130≤x<140

D

x≥140

根据以上信息,解答下列问题:
(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为%;
(2)本次共调查了名学生,其中跳绳次数在130≤x<140范围内的人数为人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为%;
(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.

查看答案和解析>>

同步练习册答案