精英家教网 > 初中数学 > 题目详情
如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.

【答案】分析:(1)根据垂径定理和圆的性质,同弧的圆周角相等,又因为△AOC是等腰三角形,即可求证.
(2)根据勾股定理,求出各边之间的关系,即可确定半径.
解答:(1)证明:连接OC,
∵AB为⊙O的直径,CD是弦,且AB⊥CD于E,
∴CE=ED,.(2分)
∴∠BCD=∠BAC.(3分)
∵OA=OC,∴∠OAC=∠OCA.
∴∠ACO=∠BCD.(5分)

(2)解:设⊙O的半径为Rcm,则OE=OB-EB=(R-8)cm,
CE=CD=×24=12cm,(6分)
在Rt△CEO中,由勾股定理可得
OC2=OE2+CE2,即R2=(R-8)2+122(8分)
解得R=13,∴2R=2×13=26cm.
答:⊙O的直径为26cm.(10分)
点评:本题考查垂弦定理、圆心角、圆周角的应用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD,垂足为E.连接AC,OC,BC,若EB=8cm,CD=24cm,则⊙O的直径为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为⊙O的直径,点P为OA上一点,弦MN过点P,且AP=2,OP=3,MP=2
2
,若OQ⊥MN于点Q,求OQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为⊙O的直径,C、D是直径AB同侧圆周上两点,且弧CD=弧BD,过D作DE⊥AC于点E,求证:DE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为圆O的直径,AC为弦,OD∥BC交AC于D,OD=2cm,求BC的长.

查看答案和解析>>

同步练习册答案