精英家教网 > 初中数学 > 题目详情
3.已知$\left\{\begin{array}{l}{2x-4y-5z=0}\\{-3x+y+4z=0}\end{array}\right.$ (xyz≠0),则$\frac{xy}{{z}^{2}}$=-$\frac{77}{100}$.

分析 将z看作常数,第二个方程整理得到y=3x-4z,然后利用代入消元法表示出y,再代入代数式进行计算即可得解.

解答 解:$\left\{\begin{array}{l}{2x-4y-5z=0①}\\{-3x+y+4z=0②}\end{array}\right.$,
由②得,y=3x-4z③,
③代入①得,2x-4(3x-4z)-5z=0,
解得x=$\frac{11z}{10}$,
将x=$\frac{11z}{10}$代入③得,y=3×$\frac{11z}{10}$-4z=-$\frac{7z}{10}$,
所以,$\frac{xy}{{z}^{2}}$=$\frac{\frac{11z}{10}×(-\frac{7z}{10})}{{z}^{2}}$=-$\frac{77}{100}$.
故答案为:-$\frac{77}{100}$.

点评 本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,本题难点在于把三个未知数中的一个看作常数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图1,在菱形ABCD中,AC=2,BD=2$\sqrt{3}$,AC、BD相交于点O.
(1)AB的长为2;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①求证:△ABE≌△ACF;
②判断△AEF是哪一种特殊三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.方程x2-2x-1=0根的情况是(  )
A.无实数根B.两个相等的实数根
C.两个不相等的实数根D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在一次数学课上,老师写出了这样几个方程组:
①$\left\{\begin{array}{l}{2x+3y=4}\\{5x+6y=7}\end{array}\right.$,②$\left\{\begin{array}{l}{2x+3y=4}\\{3x+5y=7}\end{array}\right.$,③$\left\{\begin{array}{l}{x+3y=5}\\{2x+5y=8}\end{array}\right.$
(1)请你求出上面三个方程组的解.
(2)从这三个方程组的解中你发现了什么?请你也写出一个具有这样待征的方程组.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.关于x的不等式组$\left\{\begin{array}{l}{x-m>0}\\{2x-3≥3(x-2)}\end{array}\right.$恰有四个整数解,那么m的取值范围为(  )
A.m≥-1B.m<0C.-1≤m<0D.-1<m<0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知$\left\{\begin{array}{l}{x-3y=0}\\{y+4z=0}\end{array}\right.$且z≠0,则$\frac{x}{z}$的值为-12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,△ABC为等边三角形,点P是边AC的延长线上一点,连接BP,作∠BPQ等于60°,直线PQ与直线BC交于点N.
(1)若点C平分AP时,求证:PB=PN;
(2)若点C 不平分时,求证:AP•PC=AB•CN;
(3)若BC=2,CN=$\frac{3}{2}$,求∠N的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.甲、乙两人共有48只桔子,如果甲先给乙与乙同样多的桔子,然后乙再给甲与甲所剩桔子同样多的桔子,这时甲、乙两人的桔子数相等,设甲原有x只桔子,乙原有y只桔子,则可列二元一次方程组为(  )
A.$\left\{\begin{array}{l}{x+y=48}\\{3x=5y}\end{array}\right.$B.$\left\{\begin{array}{l}{x+y=48}\\{5x=3y}\end{array}\right.$C.$\left\{\begin{array}{l}{x+y=48}\\{x=2y}\end{array}\right.$D.$\left\{\begin{array}{l}{x+y=48}\\{y=2x}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图①,矩形OABC的边OA、OC分别在坐标轴上,点B在第二象限,且点B的横、纵坐标是一元二次方程m2+m-12=0的两个实数根.把矩形OABC沿直线BE折叠,使点C落在AB边上的点F处,点E在CO边上.
(1)直接填空:B(-4,3),F(-1,3);
(2)如图②,若△BCE从该位置开始,以固定的速度沿x轴水平向右移动,直到点C与原点O重合时停止.记△BCE平移后为△B′C′E′,△B′C′E′与四边形OABE重叠部分的面积为S,请求出面积S与平移距离t之间的函数关系式,并直接写出t的取值范围;
(3)如图③,设点G为EF中点,若点M在直线CG上,点N在y轴上,是否存在这样的点M,使得以M、N、B、G为顶点的四边形为平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案